UM_FHS at the CLEF 2025 SimpleText Track Comparing No-Context and Fine-Tune Approaches for GPT-4.1 Models in Sentence and Document-Level Text Simplification Primoz Kocbek^{1,2}, Gregor Stiglic^{1,3} ¹Faculty of Health Sciences, University of Maribor, Slovenia ²Faculty of Medicine, University of Ljubljana, Slovenia ²University of Edinburgh, Usher Institute, Edinburgh, UK # **Background and Motivation** - continuation of our previous work from TREC 2024 PLABA track 1 (endto-end biomedical abstracts adaptations) - using NIH guidelines for written health materials (average literacy level <K8 - students 13–14 years old - European Health Literacy Survey (HLS-EU) at least 1 in 10 (12%) respondents showed insufficient health literacy and almost 1 in 2 (47%) had limited (insufficient or problematic) health literacy # Task and training data - Task 1: Text Simplification: Simplify scientific text - Task 1.1 Sentence-level Scientific Text Simplification - Task 1.2 Document-level Scientific Text Simplification - Training data - Cochrane-auto corpus, derived from biomedical literature abstracts and lay summaries from Cochrane systematic reviews - Data realigned at the paragraph, sentence, and document levels # **Models and methods used** - Focused on gpt-4.1 family of models (version 2025-04-14) - gpt-4.1 - gpt-4.1-mini - gpt-4.1-nano - Methods - Prompt template on all models - Fine-tuned gpt-4.1-mini and gpt-4.1-nano (not on gpt-4.1 due to cost) # **Evaluation Metrics** - SARI, BLEU, FKGL, Compression ratio, Levenshtein similarity, Lexical complexity score,... - ...in the biomedical domain human assessment is still the gold standard - decided that we used prompts at the document level - The sentences were supplied as a list of sentences to the LLM - Special emphasis on the number of sentences or if a sentence is omitted - Note: if only sentences were provided, the text adaptations might be worse, since the context in the surrounding context would not be present - used OpenAl gpt-4.1 prompting guide - started with general prompt structure - optimized with ChatGPT ``` # Role and Objective # Instructions ## Sub-categories for more detailed instructions # Reasoning Steps # Output Format # Examples ## Example 1 # Context # Final instructions and prompt to think step by step ``` https://cookbook.openai.com/examples/gpt4-1 prompting guide - User prompt - Input: list of sentences (strings) - Output: list of sentences (strings), <u>same length</u> - Define the rules according to NIH guidelines TASK - Plain-language sentence adaptation (based on NIH guidelines for written health materials) ``` INPUT =['SENTENCE_1', 'SENTENCE_2', . . . , 'SENTENCE_N'] OUTPUT FORMAT → ['ADAPTATION_1', 'ADAPTATION_2', . . . , 'ADAPTATION_N'] ``` #### ESSENTIAL RULES - Audience Write for readers at about a US 8th-grade level (K8 or smart 13-14 year old student). - Workflow (1) Carry over each sentence exactly as written, (2) decide if it should be adapted or omitted, (3) review the whole list for coherence while keeping every '' placeholder. - Splitting If a sentence contains more than one idea, split it into shorter sentences inside the same pair of single quotes; never merge content from different source items. - Omission If a sentence is irrelevant to lay readers (for example, detailed measurement methods), output the empty string '' for that element. - Jargon Replace professional terms with common words. If no plain synonym exists, keep the term once and add a brief parenthetical gloss. - Statistics Remove p-values, confidence intervals, and similar numbers unless they are essential for understanding. - · Voice Use active voice when possible. - · Pronouns Resolve ambiguous pronouns or other references. - Subheadings Remove IMRAD labels, such as 'Background:', 'Introduction:', 'METHODS:', 'Results:', 'Discussion:' or integrate them into a full sentence. - Output Return one **Python list with N elements**—exactly the same number of elements as the input list—and nothing else. Double check this. - Give detailed instructions - Provide an example (jargon can be Substituted, Explained, Generalized, Exemplified, Omitted) - Some instructions are stated multiple times - Also included NIH adapted guidelines (from PLABA) #### INSTRUCTIONS - 1 Produce one list with N elements in the original order. - 2 For each element follow this three-step process: - First: Carry the sentence over unchanged. SENTENCE 1 → ADAPTATION 1, - ..., SENTENCE_N → ADAPTATION_N - Second decide and modify ADAPTATIONS as needed: - If it is already plain → leave it as is. - If it is irrelevant → replace with ''. - Otherwise → simplify it (you may split it). - Third: After processing all items, review the entire list for flow and pronoun clarity. Also keep every '' element in place. - 3 Double-check (again) that the output list contains N elements and that no facts have been added or lost. If the number DO NOT match return to point 1 and re-do all the steps. Repeat until the number MATCH. Return **only** the final list. #### OUICK EXAMPLES - · Simplify 'Myocardial infarction is a leading cause of mortality worldwide. - ' → 'A heart attack is a major cause of death worldwide.' - Carry over 'Metabolism is essential for life.' → 'Metabolism is essential for life.' - Omit 'Blood pressure was measured with a sphygmomanometer.' $\boldsymbol{\rightarrow}$ '' - Split 'Cardiovascular disease is the leading cause of mortality, and it is influenced by genetics as well as lifestyle.' \rightarrow 'Heart disease is the leading cause of death. Genetics and lifestyle also influence it.' - Similar as for Task 1.1 - No explicit instructions, the output is just a string TASK - Plain-language sentence adaptation (based on NIH guidelines for written health materials) #### ESSENTIAL RULES - Audience Write for readers at about a US 8th-grade level (K8 or smart 13-14 year old student). - Splitting If a sentence contains more than one idea, split it into shorter sentences inside the same pair of single quotes; never merge content from different source items. - Omission If a sentence is irrelevant to lay readers (for example, detailed measurement methods), output the empty string ''. - Jargon Replace professional terms with common words. If no plain synonym exists, keep the term once and add a brief parenthetical gloss. - Statistics Remove p-values, confidence intervals, and similar numbers unless they are essential for understanding. - Voice Use active voice when possible. - · Pronouns Resolve ambiguous pronouns or other references. - Subheadings Remove IMRAD labels, such as 'Background:', 'Introduction:', 'METHODS:', 'Results:', 'Discussion:' or integrate them into a full sentence. - Output Return only the final simplified sentence as string. #### **OUICK EXAMPLES** - Simplify 'Myocardial infarction is a leading cause of mortality worldwide.' → 'A heart attack is a major cause of death worldwide.' - Carry over 'Metabolism is essential for life.' → 'Metabolism is essential for life.' - Omit 'Blood pressure was measured with a sphygmomanometer.' → '' - Split 'Cardiovascular disease is the leading cause of mortality, and it is influenced by genetics as well as lifestyle.' → 'Heart disease is the leading cause of death. Genetics and lifestyle also influence it.' # Fine-tuning (Task 1.1 and 1.2) Supervised fine-tuning (SFT) lets you train an OpenAI model with examples for your specific use case. The result is a customized model that more reliably produces your desired style and content. https://platform.openai.com/docs/guides/supervised-fine-tuning # **Fine-tuning (cost estimate)** - \$25 for gpt-4.1, \$5 for gpt-4.1-mini, \$1.5 for gpt-4.1-nano per million tokens (time of writing) - training data: 4.8 million tokens sentence level, 2.1 million document level - gpt-4.1 it would be ~\$172 (just a projection), gpt-4.1-mini ~\$34.5 and gpt-4.1-nano \$10.3 - First test dataset 37 Cochrane abstracts aligned with their plain language summaries via Cochrane-auto, comprising of 587 sentence pairs - Second test dataset 217 unaligned abstract-summary pairs (only used for task 1.2) | Model | SARI | BLEU | FKGL | Compression ratio | |-----------------|--------|--------|-------|-------------------| | Source | 12.03 | 20.53 | 13.54 | 1.00 | | Reference | 100.00 | 100.00 | 11.73 | 0.56 | | gpt-4.1-nano | 29.47 | 18.46 | 11.10 | 0.86 | | gpt-4.1-nano-ft | / | / | / | / | | gpt-4.1-mini | 43.34 | 13.93 | 7.46 | 0.78 | | gpt-4.1-mini-ft | 42.83 | 20.85 | 12.29 | 0.71 | | gpt-4.1 | 38.84 | 14.04 | 8.51 | 0.79 | ### Comments (first test set): - best-performing model was gpt-4.1-mini (SARI 43.34) - FKGL, was below grade 8, aligning well with NIH guidelines for plain language adaptations, reference FKGL was above | | count | SARI | BLEU | FKGL | Compression ratio | Sentence splits | Levenshtein similarity | Exact copies | Additions proportion | Deletions proportion | Lexical complexity score | |----------------------|-------|-------|-------|-------|-------------------|-----------------|------------------------|--------------|----------------------|----------------------|--------------------------| | Team/Method Source | 37 | 12.03 | 20.53 | 13.54 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 8.89 | | Reference | 37 | 100 | 100 | 11.73 | 0.56 | 0.67 | 0.50 | 0.0 | 0.16 | 0.60 | 8.71 | | UM-FHS gpt-4.1-mini | 37 | 43.34 | 13.93 | 7.46 | 0.78 | 1.58 | 0.63 | 0.00 | 0.28 | 0.50 | 8.50 | | UM-FHS gpt-4.1-mini- | 37 | 42.83 | 20.85 | 12.29 | 0.71 | 0.86 | 0.62 | 0.00 | 0.15 | 0.46 | 8.67 | | DSGT plan_guided_lla | 37 | 42.33 | 10.43 | 7.77 | 0.48 | 0.97 | 0.47 | 0.00 | 0.18 | 0.70 | 8.52 | | UvA o-bartsent-cochr | 37 | 42.31 | 25.72 | 12.08 | 0.41 | 0.51 | 0.55 | 0.00 | 0.01 | 0.62 | 8.72 | | SINAI PRMZSTASK11V1 | 37 | 41.82 | 6.50 | 11.41 | 1.37 | 1.56 | 0.53 | 0.00 | 0.59 | 0.30 | 8.33 | | THM p2-gpt-4.1-nano | 37 | 41.32 | 10.49 | 14.90 | 1.27 | 1.16 | 0.63 | 0.00 | 0.45 | 0.26 | 8.62 | | UvA bartsent-cochran | 37 | 41.28 | 17.67 | 11.20 | 0.35 | 0.49 | 0.48 | 0.00 | 0.01 | 0.67 | 8.76 | | Scalar gpt_md_2_1 | 37 | 40.95 | 14.07 | 18.79 | 0.62 | 0.47 | 0.53 | 0.00 | 0.22 | 0.60 | 8.68 | | UBOnlp gpt4o | 37 | 40.74 | 7.53 | 7.39 | 0.46 | 0.80 | 0.41 | 0.00 | 0.23 | 0.73 | 8.31 | | THM p1-gpt-4.1-nano | 37 | 40.42 | 11.02 | 14.66 | 1.23 | 1.13 | 0.65 | 0.00 | 0.42 | 0.24 | 8.61 | | PICT S3Pipeline | 37 | 40.15 | 12.96 | 7.61 | 0.71 | 1.53 | 0.62 | 0.00 | 0.21 | 0.49 | 8.84 | | Fujitsu llm_t5_rule | 37 | 39.04 | 6.70 | 6.79 | 0.31 | 0.71 | 0.42 | 0.00 | 0.08 | 0.76 | 8.85 | | UM-FHS gpt-4.1 | 37 | 38.84 | 14.04 | 8.51 | 0.79 | 1.26 | 0.68 | 0.30 | 0.22 | 0.41 | 8.49 | | UvA Ilama31 | 37 | 38.76 | 2.83 | 8.30 | 0.93 | 1.58 | 0.46 | 0.00 | 0.60 | 0.66 | 8.34 | | DUTH Task11_flan-t5- | 37 | 38.73 | 18.84 | 11.95 | 0.61 | 0.78 | 0.66 | 0.00 | 0.10 | 0.50 | 8.96 | | Fujitsu t5efficient | 37 | 38.60 | 4.28 | 5.58 | 1.79 | 3.63 | 0.43 | 0.00 | 0.77 | 0.29 | 10.31 | | Fujitsu llm_gpt3.5-t | 37 | 38.53 | 6.30 | 5.18 | 0.36 | 0.99 | 0.45 | 0.00 | 0.11 | 0.74 | 8.89 | | Fujitsu llm_45_judge | 37 | 38.41 | 5.45 | 5.26 | 0.32 | 0.89 | 0.42 | 0.00 | 0.09 | 0.77 | 8.87 | | Fujitsu dummy60 | 37 | 38.37 | 14.50 | 1.19 | 0.37 | 2.74 | 0.52 | 0.00 | 0.08 | 0.67 | 8.74 | | SINAI PRMZSTASK11V2 | 37 | 37.84 | 5.93 | 12.97 | 1.64 | 1.63 | 0.56 | 0.00 | 0.59 | 0.17 | 8.47 | | THM pni1-gpt-4.1-na | 37 | 37.60 | 8.24 | 15.21 | 1.84 | 1.63 | 0.56 | 0.00 | 0.57 | 0.12 | 8.61 | | UvA bartdoc-ca | 37 | 37.25 | 19.54 | 11.97 | 0.51 | 0.61 | 0.62 | 0.00 | 0.02 | 0.52 | 8.77 | | EngKh biomedical_lla | 37 | 36.68 | 11.47 | 10.62 | 1.14 | 1.51 | 0.65 | 0.00 | 0.37 | 0.28 | 8.69 | | UvA llama31 | 37 | 36.45 | 1.22 | 13.04 | 1.07 | 1.31 | 0.41 | 0.00 | 0.66 | 0.70 | 8.61 | | AIIRLab mistral | 37 | 36.08 | 18.41 | 12.78 | 0.94 | 1.06 | 0.76 | 0.00 | 0.19 | 0.28 | 8.81 | | MTest bartfinetuned | 37 | 34.98 | 26.52 | 11.94 | 0.74 | 0.98 | 0.83 | 0.00 | 0.01 | 0.30 | 8.78 | https://www.dei.unipd.it/~faggioli/temp/clef2025/paper_344.pdf | Model | SARI | BLEU | FKGL | Compression ratio | |-----------------|--------|--------|-------|-------------------| | Source | 12.03 | 20.53 | 13.54 | 1.00 | | Reference | 100.00 | 100.00 | 11.73 | 0.56 | | gpt-4.1-nano | 37.01 | 14.74 | 9.05 | 0.69 | | gpt-4.1-nano-ft | 43.61 | 16.00 | 10.63 | 0.50 | | gpt-4.1-mini | 43.53 | 14.11 | 7.48 | 0.72 | | gpt-4.1-mini-ft | 42.82 | 22.94 | 11.93 | 0.60 | | gpt-4.1 | 43.83 | 18.12 | 8.80 | 0.67 | # Comments (first test set): - gpt-4.1 achieved the highest SARI score (43.83), closely followed by gpt-4.1-nano-ft (43.61). - gpt-4.1 better adhered to NIH guidelines with an FKGL of 8.80, compared to 10.63 for gpt-4.1nano-ft. | Team/Method | count | SARI | BLEU | FKGL | Compression ratio | Sentence splits | Levenshtein similarity | Exact copies | Additions proportion | Deletions proportion | Lexical complexity score | |---|----------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------| | Source | 37 | 12.03 | 20.53 | 13.54 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 8.89 | | Reference | 37 | 100 | 100 | 11.73 | 0.56 | 0.67 | 0.50 | 0.0 | 0.16 | 0.60 | 8.71 | | LIA sumguid-all-w500 | 37 | 44.55 | 12.18 | 9.71 | 0.84 | 1.26 | 0.50 | 0.00 | 0.35 | 0.54 | 8.56 | | SINAI PRMZSTASK12V1 | 37 | 43.93 | 10.81 | 10.45 | 0.86 | 1.07 | 0.55 | 0.00 | 0.39 | 0.49 | 8.33 | | UM-FHS gpt-4.1 | 37 | 43.83 | 18.12 | 8.80 | 0.67 | 1.10 | 0.58 | 0.14 | 0.21 | 0.53 | 8.44 | | UM-FHS gpt-4.1-nano- | 37 | 43.61 | 16.00 | 10.63 | 0.50 | 0.69 | 0.45 | 0.00 | 0.16 | 0.65 | 8.55 | | LIA sumguid-lang-w50 | 37 | 43.61 | 10.55 | 10.50 | 0.83 | 1.18 | 0.47 | 0.00 | 0.37 | 0.57 | 8.52 | | UM-FHS gpt-4.1-mini
ASM MistralMaxFRE
ASM MistralV0
ASM MistralMinFKGL | 37
37
37
37 | 43.53
43.35
43.31
43.24 | 14.11
12.32
12.41
12.27 | 7.48
11.63
11.65
11.63 | 0.72
0.73
0.73
0.73 | 1.49
0.92
0.92
0.93 | 0.47
0.62
0.53
0.53
0.53 | 0.00
0.00
0.00
0.00 | 0.25
0.27
0.27
0.27 | 0.57
0.52
0.56
0.55
0.56 | 8.52
8.74
8.74
8.75 | | ASM MistralV7 | 37 | 42.95 | 11.34 | 12.53 | 0.78 | 0.94 | 0.51 | 0.00 | 0.30 | 0.55 | 8.80 | | ASM MistralV7CleanLi | 37 | 42.93 | 11.38 | 13.77 | 0.78 | 0.84 | 0.51 | 0.00 | 0.29 | 0.56 | 8.80 | | UM-FHS gpt-4.1-mini- | 37 | 42.82 | 22.94 | 11.93 | 0.60 | 0.76 | 0.60 | 0.03 | 0.10 | 0.52 | 8.73 | | AIIRLab Mistral_7b_b UvA baseline-cochran LIA sumguid-styl-w50 UBOnlp gpt40 | 37 | 42.40 | 12.98 | 8.82 | 0.58 | 0.94 | 0.52 | 0.00 | 0.21 | 0.61 | 8.48 | | | 37 | 42.10 | 24.27 | 11.71 | 0.57 | 0.71 | 0.61 | 0.00 | 0.06 | 0.49 | 8.74 | | | 37 | 41.98 | 10.38 | 10.09 | 0.63 | 1.00 | 0.46 | 0.00 | 0.27 | 0.66 | 8.65 | | | 37 | 41.56 | 5.45 | 7.22 | 1.14 | 2.08 | 0.50 | 0.00 | 0.58 | 0.43 | 8.25 | | LIA sumguid-styl-w50 | 37 | 41.11 | 8.73 | 6.35 | 0.61 | 1.30 | 0.42 | 0.00 | 0.33 | 0.68 | 8.44 | | AIIRLab llama_3.1-8b | 37 | 41.07 | 8.61 | 9.22 | 0.46 | 0.70 | 0.43 | 0.00 | 0.20 | 0.72 | 8.44 | | LIA testLlama33 | 37 | 40.79 | 8.42 | 10.74 | 0.46 | 0.65 | 0.42 | 0.00 | 0.18 | 0.73 | 8.64 | | DSGT llama_summary_s | 37 | 40.32 | 7.63 | 9.56 | 0.59 | 0.86 | 0.42 | 0.00 | 0.31 | 0.70 | 8.49 | | PICT S3Pipeline | 37 | 40.29 | 13.43 | 7.77 | 0.74 | 1.55 | 0.63 | 0.00 | 0.21 | 0.47 | 8.77 | | AIIRLab llama-8b | 37 | 39.14 | 5.62 | 8.88 | 0.34 | 0.62 | 0.35 | 0.00 | 0.15 | 0.80 | 8.43 | | AIIRLab llama3.2-3b | 37 | 39.14 | 5.62 | 8.88 | 0.34 | 0.62 | 0.35 | 0.00 | 0.15 | 0.80 | 8.43 | | DUTH task12_led-larg | 37 | 39.11 | 9.83 | 12.41 | 0.37 | 0.47 | 0.45 | 0.00 | 0.06 | 0.70 | 8.80 | | SINAI PRMZSTASK12V2 | 37 | 38.50 | 10.30 | 11.55 | 1.09 | 1.16 | 0.63 | 0.00 | 0.43 | 0.29 | 8.44 | https://www.dei.unipd.it/~faggioli/temp/clef2025/paper_344.pdf | Model | SARI | BLEU | FKGL | Compression ratio | |------------------|--------|--------|-------|-------------------| | Source | 7.84 | 10.55 | 13.29 | 1.00 | | Reference | 100.00 | 100.00 | 11.28 | 0.72 | | gpt-4.1-nano | 28.89 | 10.35 | 9.90 | 0.83 | | gpt-4.1-nano-ft | / | / | / | / | | gpt-4.1-mini | 42.13 | 9.52 | 7.56 | 0.74 | | gpt-4. 1-mini-ft | 39.16 | 11.95 | 12.23 | 0.67 | | gpt-4.1 | 37.93 | 9.46 | 8.82 | 0.76 | # Comments (second test set): - gpt-4.1-mini best performance (SARI 42.13 and a FKGL of 7.56) - -gpt-4.1-nano-ft generated no usable output. | Team/Method | count | SARI | BLEU | FKGL | Compression ratio | Sentence splits | Levenshtein similarity | Exact copies | Additions proportion | Deletions proportion | Lexical complexity scor | |----------------------|-------|-------|-------|-------|-------------------|-----------------|------------------------|--------------|----------------------|----------------------|-------------------------| | Source | 217 | 7.84 | 10.55 | 13.29 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 9.05 | | Reference | 217 | 100 | 100 | 11.28 | 0.72 | 0.97 | 0.40 | 0.00 | 0.29 | 0.63 | 8.65 | | DSGT plan_guided_lla | 217 | 42.98 | 6.33 | 7.82 | 0.48 | 0.99 | 0.46 | 0.00 | 0.18 | 0.71 | 8.50 | | UBOnlp gpt4o | 217 | 42.20 | 4.05 | 7.49 | 0.38 | 0.68 | 0.37 | 0.00 | 0.18 | 0.78 | 8.37 | | UM-FHS gpt-4.1-mini | 217 | 42.13 | 9.52 | 7.56 | 0.74 | 1.52 | 0.61 | 0.00 | 0.26 | 0.53 | 8.54 | | SINAI PRMZSTASK11V1 | 217 | 41.25 | 4.59 | 12.39 | 1.44 | 1.56 | 0.51 | 0.00 | 0.61 | 0.30 | 8.44 | | UvA Ilama31 | 217 | 40.92 | 2.62 | 8.63 | 1.00 | 1.64 | 0.45 | 0.00 | 0.62 | 0.64 | 8.35 | | THM p2-gpt-4.1-nano | 217 | 39.57 | 6.50 | 15.40 | 1.32 | 1.20 | 0.60 | 0.00 | 0.47 | 0.27 | 8.68 | | UM-FHS gpt-4.1-mini- | 217 | 39.16 | 11.95 | 12.23 | 0.67 | 0.82 | 0.60 | 0.00 | 0.14 | 0.50 | 8.76 | | PICT S3Pipeline | 217 | 39.11 | 8.30 | 6.52 | 0.69 | 1.65 | 0.60 | 0.00 | 0.21 | 0.52 | 8.85 | | Scalar gpt_md_2_1 | 217 | 38.96 | 8.25 | 19.45 | 0.62 | 0.43 | 0.52 | 0.00 | 0.23 | 0.60 | 8.77 | | Fujitsu llm_gpt3.5-t | 217 | 38.84 | 3.05 | 5.04 | 0.35 | 1.02 | 0.44 | 0.00 | 0.11 | 0.75 | 8.96 | | UvA bartsent-cochran | 217 | 38.71 | 6.01 | 11.34 | 0.31 | 0.46 | 0.45 | 0.00 | 0.00 | 0.72 | 8.81 | | Fujitsu llm_t5_rule | 217 | 38.55 | 2.75 | 6.60 | 0.31 | 0.77 | 0.42 | 0.00 | 0.08 | 0.77 | 8.95 | | Fujitsu llm_45_judge | 217 | 38.54 | 2.34 | 5.19 | 0.31 | 0.93 | 0.41 | 0.00 | 0.09 | 0.78 | 8.95 | | UvA o-bartsent-cochr | 217 | 38.53 | 8.57 | 11.99 | 0.37 | 0.49 | 0.51 | 0.00 | 0.01 | 0.67 | 8.78 | | UvA llama31 | 217 | 38.50 | 1.13 | 13.66 | 1.09 | 1.23 | 0.40 | 0.00 | 0.66 | 0.71 | 8.65 | | Fujitsu llm_45 | 217 | 38.49 | 2.06 | 5.32 | 0.31 | 1.00 | 0.40 | 0.00 | 0.09 | 0.79 | 8.90 | | THM p1-gpt-4.1-nano | 217 | 38.24 | 6.59 | 15.03 | 1.28 | 1.18 | 0.63 | 0.00 | 0.45 | 0.25 | 8.69 | | Fujitsu llm_45fewSho | 217 | 38.20 | 1.87 | 3.51 | 0.28 | 0.88 | 0.37 | 0.00 | 0.12 | 0.81 | 8.82 | | UM-FHS gpt-4.1 | 217 | 37.93 | 9.46 | 8.82 | 0.76 | 1.22 | 0.64 | 0.23 | 0.22 | 0.46 | 8.54 | | UvA bartdoc-ca | 217 | 37.14 | 7.23 | 11.43 | 0.39 | 0.49 | 0.52 | 0.00 | 0.01 | 0.63 | 8.85 | | SINAI PRMZSTASK11V2 | 217 | 35.95 | 4.03 | 14.00 | 1.76 | 1.64 | 0.54 | 0.00 | 0.61 | 0.15 | 8.56 | | DUTH Task11_flan-t5- | 217 | 35.35 | 10.07 | 11.21 | 0.60 | 0.80 | 0.65 | 0.00 | 0.09 | 0.51 | 9.00 | | THM pni1-gpt-4.1-na | 217 | 35.26 | 5.23 | 15.49 | 1.94 | 1.72 | 0.54 | 0.00 | 0.59 | 0.12 | 8.68 | | AllRLab mistral | 217 | 33.95 | 10.30 | 13.26 | 0.93 | 1.04 | 0.72 | 0.00 | 0.21 | 0.32 | 8.86 | | RECAIDS T5 | 217 | 33.89 | 0.03 | 3.72 | 0.37 | 0.98 | 0.31 | 0.00 | 0.23 | 0.89 | 8.87 | | EngKh biomedical lla | 217 | 33.16 | 7.30 | 10.76 | 1.18 | 1.53 | 0.65 | 0.00 | 0.37 | 0.25 | 8.75 | https://www.dei.unipd.it/~faggioli/temp/clef2025/paper_344.pdf # **Discussion and future work** - gpt-4.1-mini outperformed gpt-4.1 in this task - Focused on OpenAI models, for private healthcare data a locally deployed LLM should be considered/used; - FT did not show improvement, except for a specific case - (Future work) Expansion to other domains might be feasible, since the best performing approach just uses in-prompt context - (Future work) LLM-as-a-judge with CoT, such as G-Eval, that can evaluate an output on any criteria, might be an addition for human evaluation # Thank you for your attention! primoz.kocbek@um.si