An (LMM free¹) Benchmark Collection for Assessing Scholarly Search by Non-Educated Users²

Stéphane Huet Éric SanJuan

CLEF 2025, Madrid, Spain

¹<5%

²Computer, NLP, and data scientists

Motivation

- Improving Access to Scientific Texts for Everyone
 - Everyone agrees on the importance of objective scientific information
 - But scientific documents are inherently complex...
- Can we improve accessibility for everyone?
 - Experts
 - Students
 - Lay persons
 - Ourselves
- Useful for:
 - Scientific communication
 - Science journalism
 - Political communication
 - Education

The SimpleText-1 Test Collection

- A resource for scientific information access, shared in the context of the CLEF SimpleText Track 1 (2022-2024).
- Designed to help users retrieve scientific abstracts in response to popular science queries.
- The collection includes:
 - A large corpus of scientific abstracts and more.
 - A set of relevance labels (qrels).
 - Additional automatic judgments based on dense vector representations and LLMs.
 - A relational framework for efficient storage and retrieval of multiple embeddings.
 - Multiple baseline systems for meta-evaluation of qrels.

The Corpus: the Citation Network Dataset (12th version)³

- Scientific publications in computer science and related fields from MS Open Academic Graph (OAG) / OpenAlex:
 DBLP + ACM citation network + MS FoS + author's abstracts
- Provides a large source of scientific documents for our test collection.
- Key statistics (publications before 2020):
 - 4,894,083 bibliographic references
 - 4,232,520 abstracts in English
 - 3,058,315 authors with their affiliations
 - 45,565,790 ACM citations

³ J. Tang, A. C. Fong, B. Wang, J. Zhang, A Unified Probabilistic Framework for Name Disambiguation in Digital Library, IEEE Transactions on Knowledge and Data Engineering 24 (2012) 975–987.

Topics and Queries

- **Topics:** 40 press articles from *The Guardian* and *Tech Xplore*, written for a general audience.
- These articles cover various domains of computer science and electronics (AI, cybersecurity, bioinformatics, etc.).

• Queries:

- Short keyword queries (1-4 per topic) crafted by computer scientists to pinpoint technical concepts.
- Manually verified to ensure at least 5 relevant abstracts exist in the corpus.
- Long queries (62 total for 2024), generated by GPT4 and manually reviewed, to explore subtopics.

Topics and Queries

Guardian

• Topics: G01-G20

- Queries: short and long
 - 42 short queries G*.[1-4], e.g. gene editing, drug discovery, crispr, forensics, advertising, Snowden
 - 63 long queries: G*.C[1-5], e.g. how algorithms are designed with human interaction in mind

Tech Xplore

- Topics: T01-T20
- 67 Queries: T*.[1-4], e.g. phototransistor, 3G, energy efficiency, empathy, Bayesian approach

Relevance Judgments (Qrels)

• **Iterative Construction:** The Qrels were built over three editions (2022-2024) using a cumulative process.

Methodology:

- A pooling method was used, where a sample of documents submitted by participants was manually judged.
- New judgments were added to the training set for the following edition.
- The official test sets were always on new, unassessed queries to prevent overfitting.

Judgment Criteria:

- Assess how well the title and abstract addressed the query.
- Ensure correspondence with the key themes of the original news article.

Scoring Scales:

- 2022: 0-5 scale.
- 2023-2024: Streamlined to a 0-2 scale to improve efficiency and consistency.

CLEF SimpleText Task 1 Qrels Collection Statistics.

- **Total Judgments:** Across the 3 editions, **16,011** relevance judgments were assessed.
- This resource is split into two sets:

Qrels	Topics	#Queries	#Assessed abstracts			
			0	1	2	
2023 train	G01-G15	29	672	271	356	
2023 test	G16-G20, T01-T05	34	2174	345	1207	
2024 train	G01-G15	30	790	130	83	
2024 extended test	G01-G20, T01-T05, T12-T20	66	3,681	991	457	
2024 test	G01.C1-G10.C1, T06-T11	30	2,775	1,500	579	

Qrels Expansion

- The training set can be expanded using our database framework.
- An SQL procedure based on title embedding similarity finds documents with similar titles to those already judged relevant.
- This method can add over 2,000 new relevant documents, bringing the training set to 13,407 total judgments.

Comparison of LLM Models to generate q-rels (Promps ...)

• Prompt:

- prefix Here is a societal question and a scientific paper in computer science. Please, do not recommend papers that are off topic. I do not have time to read them all.
- prompt Answer only returning a relevance score 0, 1 or 2. 0: Not really relevant, 1: relevant, 2: very relevant.
- system You are a journalist writing about a tech topic that raises societal questions. You are looking for scientific publications that could feed your paper for a large audience.

Comparison of LLM Models to generate q-rels (... results.)

Model	tau	P-value	Accuracy (3)	Accuracy (2)
Qwen	-1.25 %	63.29 %	23.24 %	48.44 %
Qwq	30.00 %	***	32.17 %	52.73 %
Gemma3 :small	33.26 %	***	37.00 %	58.45 %
Gemma3:12b	31.95 %	***	38.29 %	59.59 %
Phi4	41.54 %	***	45.16 %	62.79 %
Llama 4	40.04 %	***	52.11 %	69.58 %

Credibility and Simplicity

• **Goal:** Beyond relevance, retrieved information must be *trustworthy* and *understandable*.

Credibility:

- Scientific publications are considered a reliable source.
- We provide metadata like number of citations and bibliographic references to assess peer recognition and scientific rigour.
- A small subset of documents was human-assessed for credibility on a 0-2 scale.

Simplicity (Complexity):

- Automatic Metrics:
 - We computed readability scores, such as the Flesch-Kincaid Grade Level (FKGL).
 - Provided complementary indices, including average characters per word, syllables, and vocabulary size.

• Human Assessments:

 A subset of documents was assessed by students on a 0-2 scale for complexity.

Human assessment

Number of assessed abstracts:

Annotators	Credibilty			Complexity		
	0	1	2	0	1	2
B. stud. in Humanity B. stud. in Comp. Sci.	402	907	549	542 72	815 114	515 109
	1172	361	712	1274	548	424

Automatic complexity measures toward human assessments

• Evolution of 4 automatic metrics w.r.t. to human scores:

Metrics	Bachelor stud.		Master stud.			
	0	1	2	0	1	2
FKGL	15.02	15.16	15.25	15.1	15.38	14.72
#words	116.36	138.24	146.13	128.48	149.49	154.06
#complex words	29.93	36.61	38.11	34.01	39.5	39.98
vocabulary size	76.91	88.76	92.26	83.15	95.02	96.21

Relational Vector Database

- We use PostgreSQL as our relational database management system.
- It leverages key features for our system:
 - **JSON type** for flexible document storage and data extraction.
 - Generalized Inverted Indexes (GIN) for efficient full-text search.
 - A simple **ivvflat index** for fast k-nearest neighbors search on vectors.
- The complete database is available in SQL code or a Docker image for participants at:
 - https://inex:qatc2011@wayback.simpletext-project.com/

Relational schema including JSON corpora and q-rels

Decoupled Architecture

- Documents are stored in a central dblp table.
- Two derived relations: dblp_text (textual content) and dblp_v (embeddings).
- This separation allows for:
 - Adding new dense representations without altering document management.
 - Considwering multiple vector dimensions and models in separate relations.
- Topics and queries are stored on different relations allowing to build agregated scores.
- Participant runs per year and qrels are stored on distinct relations with references to queries and documents.

Integrated Baseline System

- We provide a complete online baseline system to demonstrate the framework's capabilities.
- This system is based on the lightweight cross-encoder MS MARCO Mini LM.
- It uses pgcurl to integrate an online embedding service, allowing for real-time, CPU-based query processing.
- Retrieval Methods:
 - Dense Retrieval:
 - Using the MS MARCO Mini LM model.
 - We compare results based on embeddings of document titles and full abstracts.
 - Sparse Retrieval:
 - Using PostgreSQL GIN indexes for conjunctive queries.
 - BM25 results from an external ElasticSearch instance (not in the docker image) are included for comparison.

Evaluation Results

Run	MRR	Precision		NDCG		MAP
		10	20	10	20	
title	0.8454	0.6933	0.4383	0.5090	0.4010	0.1534
abstract	0.7683	0.6000	0.4067	0.4269	0.3539	0.1603
bool	0.7242	0.5233	0.3633	0.3409	0.2906	0.1199
BM25	0.6173	0.3733	0.2900	0.2818	0.2442	0.1325

- Key Finding: Mini LM models are effective for integrating efficient IR into relational databases. Combining different embeddings could yield further improvements.
- **Titles vs. Abstracts:** Title-based embeddings achieve higher NDCG10, the official measure. Abstract-based embeddings perform better on MAP and Bpref.

Future Work

- Develop and evaluate **user-centric information retrieval systems** that consider not only relevance but also comprehensibility.
- Further explore and refine the hybrid retrieval approach to better understand the thematic scope of the corpus.
- Investigate the effectiveness of different neural models for dense retrieval on our collection.
- Extend the PostgreSQL framework to support new retrieval models and passage aggregation methods.
- Utilize the collection to authentically evaluate neural approaches on textual content without the influence of modern LLMs.
- Apply the methodology to other domains to expand the scope of our work.

SimpleText project Way Back Data website

Non contaminated, LLM free (<5%)

Website: https://wayback.simpletext-project.com

Login: inex; Password: qatc2011

E-mail: wayback@simpletext-project.com