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Motivation

• Everyone agrees on the 
importance of objective and 
reliable information 

• Citizens avoid scientific 
information as they assume it is 
too complex 

• Can we better understand 
barriers to access? even 
remove them?

Misinfo /Disinfo / Fake News



What Happens When Laypersons Search Scientific Articles?

• Experiments Complexity-Aware Search and Scientific Text SimplificationTable 1
CLEF 2024 SimpleText Track Submissions

Task Run Description
1 UAms_Task1_Anserini_bm25 BM25 baseline (Anserini, stemming)
1 UAms_Task1_Anserini_rm3 RM3 baseline (Anserini, stemming)
1 UAms_Task1_CE100 Cross-encoder top 100
1 UAms_Task1_CE1K Cross-encoder top 1,000
1 UAms_Task1_CE100_CAR Cross-encoder top 100 + Complexity filter
1 UAms_Task1_CE1K_CAR Cross-encoder top 1,000 + Complexity filter

2.1 UAms_Task2-1_RareIDF Up to 5 rarest terms on idf from test-large 2023
2.3 UAms_Task2-3_Anserini_bm25 BM25 baseline (Anserini, stemming)
2.3 UAms_Task2-3_Anserini_rm3 RM3 baseline (Anserini, stemming)

3.1 UAms_Task3-1_GPT2 GPT-2 Sentence level
3.1 UAms_Task3-1_GPT2_Check GPT-2 Sentence level, Source checked
3.2 UAms_Task3-2_GPT2_Check_Snt GPT-2 Sentence level, Source checked, merged into abstracts
3.2 UAms_Task3-2_GPT2_Check_Abs GPT-2 Abstract level, Source checked
3.1 UAms_Task3-1_Wiki_BART_Snt Wikiauto trained BART sentence level simplification
3.1 UAms_Task3-1_Cochrane_BART_Snt Cochrane trained BART sentence level simplification
3.2 UAms_Task3-2_Wiki_BART_Par Wikiauto trained BART paragraph level simplification
3.2 UAms_Task3-2_Cochrane_BART_Par Cochrane trained BART paragraph level simplification
3.2 UAms_Task3-2_Wiki_BART_Doc Wikiauto trained BART document level simplification
3.2 UAms_Task3-2_Cochrane_BART_Doc Cochrane trained BART document level simplification

simply �lters out the most complex abstract per request, using a standard readability measure. The run
is aiming to remove up to 50% of the results, with the remaining abstracts in the same relevance order
as in the original run.
As the train data is limited, and none of the approaches above are speci�c to scienti�c text, we also

experimented with domain adaptation approaches in post-submission experiments.

Task 2 This task asks to identify and explain di�cult concepts.
We submitted three runs, also shown in Table 1. For Task 2.1 on complexity spotting, we submitted a

single run. As sentences have a limited number of words, we observed that naive baseline approaches
can obtain reasonable performance already. Hence, our submission is using an idf-based term weighting
to locate the most rare terms. Speci�cally, we used all train and test sentences combined as a reference
corpus to calculate document (or rather sentence) frequencies, and use this to rank each term in the
source sentence by increasing DF (or decreasing IDF).

For Task 2.3, we developed an approach to rank de�nitions or explanations for a given sentence and
term pair. However the provided test data did provide only unmatched sets of scienti�c sentences and
other sentences. Hence we submitted two runs only looking at the textual similarity of the large set of
provided ’other’ sentences.

Task 3 This task asks to simplify scienti�c text.
We submitted the twelve runs shown in Table 1. Our �rst set of experiments continues the earlier

experiments with a GPT-2 model trained in an unsupervised way. First, we use the basic pretrained
model on sentence level input. Second, we check all output against the source to avoid hallucination,
and submit this checked version. Third, we merge the sentence level simpli�cations to create abstract
level simpli�cations. Fourth, we run the model on long abstract level input, to create direct abstract
level simpli�cations. All these four runs use the exact same GPT-2 text simpli�cation model.
Our second set of experiments is with di�erent BART trained models, either trained on Wiki-Auto

or on aligned Lay Summaries from Cochrane (a home grown Cochrane-Auto). This leads to six runs,
using either Wiki or Cochrane train data, and using either sentence level, paragraph level, or document



Search for 
 Scientific Text?

#1 Unsupervised Domain Adaptation



 Domain Adaptation: Scientific Text Representations

• Zero shot neural rankers outcompete lexical, but is not tailored to domain 

• Unsupervised domain adaptation creates scientific text representations  

• Base (zero shot) can be improved by domain adaptation! 

• NDCG@10 increases from 16% to 22% (GPL), even 24% (new R-GPL)! 

• Training: query generation/fine-tuning, same inference time complexity

Table 3
Evaluation of SimpleText Task 1 (test data).

Run MRR Precision NDCG Bpref MAP
5 10 20 5 10 20

UAms_Task1_Anserini 0.7187 0.5600 0.5500 0.4078 0.3867 0.3750 0.3507 0.3994 0.1973
UAms_Task1_Anserini_rm3 0.7878 0.5933 0.5700 0.3611 0.4039 0.3924 0.3282 0.4010 0.1824
UAms_Task1_CE100 0.6618 0.4800 0.5300 0.4044 0.3419 0.3654 0.3452 0.2657 0.1579
UAms_Task1_CE1K 0.5950 0.5133 0.5333 0.4033 0.3571 0.3672 0.3505 0.4031 0.1939
UAms_Task1_CE100_CAR 0.6420 0.5333 0.4700 0.3133 0.3435 0.3199 0.2741 0.2657 0.1321
UAms_Task1_CE1K_CAR 0.6611 0.5467 0.5133 0.2911 0.3800 0.3603 0.2778 0.2676 0.1348

GPL Base† 0.3752 0.2333 0.2100 0.1611 0.1823 0.1642 0.1465 0.3192 0.0654
GPL Domain Adapt† 0.5169 0.2733 0.2667 0.2233 0.2389 0.2240 0.2075 0.3600 0.0983
GPL Domain Adapt Remining† 0.5011 0.3133 0.3033 0.2467 0.2560 0.2412 0.2285 0.3732 0.1084
† Post-submission experiment.

Table 3 shows the performance of the Task 1 submissions on the train data. We submitted four runs
focusing purely on standard retrieval e�ectiveness, and two runs addressing text complexity. On the
test data, our submission were pooled, except for the combined score runs: we oberve 7.7% (CAR top
100) and 6.0% (CAR top 1K) of unjudged documents in the top 10 of each submission. Also the domain
adapted runs have no less than 39.0–60.0% unjudged in the top 10, as they were not pooled.
We make a number of observations. First, we observer again that the two Anserini baselines using

BM25 with or without RM3 query expansion perform very reasonable with an NDCG@10 of 0.38-0.39
on the test data. The RM3 models now outperforms the vanilla BM25 on all measures except MAP for
test.

Second, the zero-shot reranking with an crossencoder does not lead to an improvement of retrieval
e�ectiveness over the BM25 �rst stage ranker on the test data. Again, the bpref measure is less sensitive
to pooling bias, and the highest bpref score of the top 1K reranking demonstrates the e�ectiveness of
these runs.

Third, the complexity aware ranking runs �ltering out the most complex abstract show competitive
performance. Although these runs intentionally avoid complex, but topically relevant, results, they
obtain higher precision scores and similar NCDG scores, and are almost on par with the runs retrieving
complex results.

Fourth, recall that the domain adapted runs have not contributed to the pool and have high fractions
of unjudged documents (no less than 39.0–60.0% unjudged in the top 10). In this light, again, the scores
of the domain adapted runs are quite impressive. We observe again the relative score increase from base
ranking, to standard GPL domain adaptation, and the GPL remining approach. We observe again that
our novel remining strategy for continuous domain adaptation improves over GPL, the state-of-the-art
for domain adaptation.

3.1.2. Analysis

This section analyzes various aspects of the submitted runs, where we pay particular attention to two
aspects of core interest to the task and the overall use case of the track in which a lay user is accessing
complex scienti�c text.

Credibility The �rst aspect of interest is the credibility of the retrieved information. Whilst one may
assume that any scienti�c paper submitted after peer-review has passed a number of quality control
steps during the peer-review process, and hence all retrieved abstract have high credibility. However, it is
well-known that lay users have di�culty separating authoritative verses non-authoritative publications,
as they are not able to discern the same cue as expert. For example, they are unaware of the reputation
of the authors [9]. How authoritative are the results retrieved for our lay user?

Table 3
Evaluation of SimpleText Task 1 (test data).

Run MRR Precision NDCG Bpref MAP
5 10 20 5 10 20

UAms_Task1_Anserini 0.7187 0.5600 0.5500 0.4078 0.3867 0.3750 0.3507 0.3994 0.1973
UAms_Task1_Anserini_rm3 0.7878 0.5933 0.5700 0.3611 0.4039 0.3924 0.3282 0.4010 0.1824
UAms_Task1_CE100 0.6618 0.4800 0.5300 0.4044 0.3419 0.3654 0.3452 0.2657 0.1579
UAms_Task1_CE1K 0.5950 0.5133 0.5333 0.4033 0.3571 0.3672 0.3505 0.4031 0.1939
UAms_Task1_CE100_CAR 0.6420 0.5333 0.4700 0.3133 0.3435 0.3199 0.2741 0.2657 0.1321
UAms_Task1_CE1K_CAR 0.6611 0.5467 0.5133 0.2911 0.3800 0.3603 0.2778 0.2676 0.1348

GPL Base† 0.3752 0.2333 0.2100 0.1611 0.1823 0.1642 0.1465 0.3192 0.0654
GPL Domain Adapt† 0.5169 0.2733 0.2667 0.2233 0.2389 0.2240 0.2075 0.3600 0.0983
GPL Domain Adapt Remining† 0.5011 0.3133 0.3033 0.2467 0.2560 0.2412 0.2285 0.3732 0.1084
† Post-submission experiment.

Table 3 shows the performance of the Task 1 submissions on the train data. We submitted four runs
focusing purely on standard retrieval e�ectiveness, and two runs addressing text complexity. On the
test data, our submission were pooled, except for the combined score runs: we oberve 7.7% (CAR top
100) and 6.0% (CAR top 1K) of unjudged documents in the top 10 of each submission. Also the domain
adapted runs have no less than 39.0–60.0% unjudged in the top 10, as they were not pooled.
We make a number of observations. First, we observer again that the two Anserini baselines using

BM25 with or without RM3 query expansion perform very reasonable with an NDCG@10 of 0.38-0.39
on the test data. The RM3 models now outperforms the vanilla BM25 on all measures except MAP for
test.

Second, the zero-shot reranking with an crossencoder does not lead to an improvement of retrieval
e�ectiveness over the BM25 �rst stage ranker on the test data. Again, the bpref measure is less sensitive
to pooling bias, and the highest bpref score of the top 1K reranking demonstrates the e�ectiveness of
these runs.

Third, the complexity aware ranking runs �ltering out the most complex abstract show competitive
performance. Although these runs intentionally avoid complex, but topically relevant, results, they
obtain higher precision scores and similar NCDG scores, and are almost on par with the runs retrieving
complex results.

Fourth, recall that the domain adapted runs have not contributed to the pool and have high fractions
of unjudged documents (no less than 39.0–60.0% unjudged in the top 10). In this light, again, the scores
of the domain adapted runs are quite impressive. We observe again the relative score increase from base
ranking, to standard GPL domain adaptation, and the GPL remining approach. We observe again that
our novel remining strategy for continuous domain adaptation improves over GPL, the state-of-the-art
for domain adaptation.

3.1.2. Analysis

This section analyzes various aspects of the submitted runs, where we pay particular attention to two
aspects of core interest to the task and the overall use case of the track in which a lay user is accessing
complex scienti�c text.

Credibility The �rst aspect of interest is the credibility of the retrieved information. Whilst one may
assume that any scienti�c paper submitted after peer-review has passed a number of quality control
steps during the peer-review process, and hence all retrieved abstract have high credibility. However, it is
well-known that lay users have di�culty separating authoritative verses non-authoritative publications,
as they are not able to discern the same cue as expert. For example, they are unaware of the reputation
of the authors [9]. How authoritative are the results retrieved for our lay user?



#1 Scientific Text 
Representations Matter

We can improve models by unsupervised domain adaptation!



Can we Avoid 
Complexity?

#2 Complexity-Aware Retrieval



Figure 2: CLEF 2022 SimpleText Top 100 results: distribution of text complexity in Flesch-Kincaid Grade
Levels.

translating to students half-way in undergraduate or college education.
What is the target level of complexity? Recall that the track also provides 40 popular science

articles from The Guardian and TechXplore, which are written by professional science journalists
for a general audience. As also shown in Table 2, the average (median) length of these articles
is 5,504 (5,540) tokens, and the average (median) complexity of the articles is 12.53 (12.7) FKGL,
con�rming that a FKGL around 12, translating to the readability level of a high school diploma,
is appropriate for general citizens.

Is every single abstract too complex for an average citizen? Figure 1 (left) shows the distribu-
tion of FKGL readability levels, which show a striking variation ranging from 5 (elementary
school, 10 year old children) to 25 (graduate school domain expert). Figure 1 (right) visualizes
this extreme variation, plotted against the length of the abstracts. There is in fact a weak
correlation between text complexity and length (r=0.1059, highly signi�cant, regression line
with slope 0.0007 in red), but for any length we �nd abstracts on any level of readability.

Our analysis con�rms the presumption that scienti�c literature is complex, and a large
fraction of abstracts would be very challenging for a layperson. However, our analysis also
reveals that a large fraction of abstracts is within the readability levels of most adult citizens.

3.1.2. Complexity of the Requests

What subset of abstracts is selected by a general query based on the popular science newspaper
articles? We use the default elastic search engine, and retrieve the top 100 scienti�c articles for
each request, and analyze the text complexity of each retrieved abstract. Over the 114 queries,
this results in a sample of 11,400 abstracts. As shown also in Table 2, the average (median)
length of the retrieved abstracts is 948 (928) tokens, and the average (median) complexity of
the abstracts is 13.79 (14.4) FKGL. Hence, the retrieved abstracts are comparable to the corpus
statistics, both in terms of length and text complexity, and also the distribution of FKGL (not
shown) is very similar.
Figure 2 shows the distribution of FKGL readability levels over rank of retrieval (left-hand

side), and over each individual query (right-hand side). In both cases we see that the standard

Complexity Variation per Topic

• For every request there are abstracts with the desirable readability level!



Complexity-Aware Ranking (1)

• As observed since 2022: zero shot neural rankers outcompete lexical 

• NCDG@10 increase 39% to 42% on train, but drops 38% to 37% on test. 

• New baseline Anserini performs better than Elastic Search dominating the pool  

• Our Complexity-Aware runs very competitive in retrieval effectiveness 

• NDCG@10 only slightly decreases from 36.7% to 36.0%!

Table 3
Evaluation of SimpleText Task 1 (test data).

Run MRR Precision NDCG Bpref MAP
5 10 20 5 10 20

UAms_Task1_Anserini 0.7187 0.5600 0.5500 0.4078 0.3867 0.3750 0.3507 0.3994 0.1973
UAms_Task1_Anserini_rm3 0.7878 0.5933 0.5700 0.3611 0.4039 0.3924 0.3282 0.4010 0.1824
UAms_Task1_CE100 0.6618 0.4800 0.5300 0.4044 0.3419 0.3654 0.3452 0.2657 0.1579
UAms_Task1_CE1K 0.5950 0.5133 0.5333 0.4033 0.3571 0.3672 0.3505 0.4031 0.1939
UAms_Task1_CE100_CAR 0.6420 0.5333 0.4700 0.3133 0.3435 0.3199 0.2741 0.2657 0.1321
UAms_Task1_CE1K_CAR 0.6611 0.5467 0.5133 0.2911 0.3800 0.3603 0.2778 0.2676 0.1348

GPL Base† 0.3752 0.2333 0.2100 0.1611 0.1823 0.1642 0.1465 0.3192 0.0654
GPL Domain Adapt† 0.5169 0.2733 0.2667 0.2233 0.2389 0.2240 0.2075 0.3600 0.0983
GPL Domain Adapt Remining† 0.5011 0.3133 0.3033 0.2467 0.2560 0.2412 0.2285 0.3732 0.1084
† Post-submission experiment.

Table 3 shows the performance of the Task 1 submissions on the train data. We submitted four runs
focusing purely on standard retrieval e�ectiveness, and two runs addressing text complexity. On the
test data, our submission were pooled, except for the combined score runs: we oberve 7.7% (CAR top
100) and 6.0% (CAR top 1K) of unjudged documents in the top 10 of each submission. Also the domain
adapted runs have no less than 39.0–60.0% unjudged in the top 10, as they were not pooled.
We make a number of observations. First, we observer again that the two Anserini baselines using

BM25 with or without RM3 query expansion perform very reasonable with an NDCG@10 of 0.38-0.39
on the test data. The RM3 models now outperforms the vanilla BM25 on all measures except MAP for
test.

Second, the zero-shot reranking with an crossencoder does not lead to an improvement of retrieval
e�ectiveness over the BM25 �rst stage ranker on the test data. Again, the bpref measure is less sensitive
to pooling bias, and the highest bpref score of the top 1K reranking demonstrates the e�ectiveness of
these runs.

Third, the complexity aware ranking runs �ltering out the most complex abstract show competitive
performance. Although these runs intentionally avoid complex, but topically relevant, results, they
obtain higher precision scores and similar NCDG scores, and are almost on par with the runs retrieving
complex results.

Fourth, recall that the domain adapted runs have not contributed to the pool and have high fractions
of unjudged documents (no less than 39.0–60.0% unjudged in the top 10). In this light, again, the scores
of the domain adapted runs are quite impressive. We observe again the relative score increase from base
ranking, to standard GPL domain adaptation, and the GPL remining approach. We observe again that
our novel remining strategy for continuous domain adaptation improves over GPL, the state-of-the-art
for domain adaptation.

3.1.2. Analysis

This section analyzes various aspects of the submitted runs, where we pay particular attention to two
aspects of core interest to the task and the overall use case of the track in which a lay user is accessing
complex scienti�c text.

Credibility The �rst aspect of interest is the credibility of the retrieved information. Whilst one may
assume that any scienti�c paper submitted after peer-review has passed a number of quality control
steps during the peer-review process, and hence all retrieved abstract have high credibility. However, it is
well-known that lay users have di�culty separating authoritative verses non-authoritative publications,
as they are not able to discern the same cue as expert. For example, they are unaware of the reputation
of the authors [9]. How authoritative are the results retrieved for our lay user?



 Rel+Read: Complexity-Aware Ranking (2)

• Standard rankers insensitive to text complexity 

• FKGL@10 of ~ 14 similar to the corpus as a whole 

• Our Complexity-Aware Ranking runs retrieve more accessible abstracts 

• FKGL@10 drops to the desirable level of 12!

Table 4
Analysis of SimpleText Task 1 output (over all 176 queries)

Run Queries Top Year Citations Length FKGL
Avg Med Avg Med Avg Med Avg Med

UAms_Anserini_bm25 176 10 2012.9 2015 16.5 3.0 1355.9 1249.0 14.5 14.3
UAms_Anserini_rm3 176 10 2013.2 2015 16.8 3.0 1376.6 1272.5 14.5 14.4
UAms_CE100 176 10 2012.6 2015 20.5 3.0 1192.5 1115.0 14.5 14.4
UAms_CE100_CAR 176 10 2012.6 2015 18.0 3.0 1151.4 1081.0 12.5 12.8
UAms_CE1K 176 10 2012.5 2015 19.4 3.0 1147.0 1061.0 14.5 14.4
UAms_CE1K_CAR 176 10 2012.3 2015 18.5 3.0 1083.2 1009.0 12.4 12.7
GPL Base 176 10 2011.8 2014 13.1 2.0 910.5 970.5 14.3 14.3
GPL Domain Adapt 176 10 2011.9 2014 13.7 2.0 970.3 971.5 14.3 14.2
GPL Domain Adapt Remining 176 10 2011.7 2014 21.3 2.0 953.9 980.0 14.2 14.2

Table 4 shows the year of publication of the top 10 results retrieved for our lay user’s popular science
query. The systems retrieve publications with a median recency of 2015, ensuring that our lay user
is consulting recent information not yet outdated or revised by more recent publications. This is an
encouraging result as standard bibliometric literature ranking approaches have a strong bias for older
publications given the fact that citations accumulate over time. But does this mean the results are not
noteworthy and lack importance?
Table 4 also shows the number of citations of the top 10 results retrieved. We observe that our

approach is retrieving results with signi�cantly higher average numbers of citations, when compared
to the baseline lexical rankers, with a gain from 17 to 21 citations on average. The GPL runs use a
di�erent baseline, but the di�erence between standard GPL, similar to the non-adapted baseline, and
the novel remining approach is striking and obtains the highest average citation score. This higher
average citation count is reassuring as it signals high levels of authoritativeness of the retrieved results.
As citations are sparse and skewed, the median number of citations is only 2-3 throughout. This also
signals that our approach is able to attract very highly cited publications into the top 10 results, leading
to the signi�cant average increase.

Readability The second aspect of interest is the readability of the retrieved information. We have
seen above that the approaches are e�ective for retrieving relevant scienti�c papers. However, although
topically relevant these paper may contain very advance scienti�c information that is not easy to
understand and interpret by lay users. Recall that this was the motivation to use complexity-aware
retrieval approaches [8]. Can complexity-aware search help retrieve relevant and accessible scienti�c
text?

Table 4 shows the Flesch-Kincaid Grade Level (FKGL) readability score of the top 10 results retrieved
for our lay user’s popular science query. We observe that the lexical and neural rankers retrieve topically
relevant information without taking the text complexity into account. Both lexical and neural rankers
retrieve information with an FKGL of 14-15 corresponding to university level text complexity. The same
holds for the domain adapted runs. This is not surprizing as we have an extensive scienti�c corpus
with an average text complexity of 14-15 re�ecting this.

Earlier we observed that our complexity-aware retrieval systems obtained almost almost the same
e�ectiveness in terms of retrieval e�ectiveness. Hence this complexity aware approach was able to rank
a similar number of topically relevant documents in the top 10 as standard lexical and neural ranking
approaches. But is the complexity-aware approach able to rank more accessible content for our lay user
issuing a popular science query?

Table 4 shows indeed favorable readability levels for the complexity aware search, with an FKGL of
12-13 corresponding to the exit level of compulsory education. Hence the complexity aware search
approach is able to retrieve relevant and accessible content to our lay user. The retrieved source abstracts
have a similar readability level as targeted by text simpli�cation systems as discussed in Section 3.3.

Table 4
Analysis of SimpleText Task 1 output (over all 176 queries)

Run Queries Top Year Citations Length FKGL
Avg Med Avg Med Avg Med Avg Med

UAms_Anserini_bm25 176 10 2012.9 2015 16.5 3.0 1355.9 1249.0 14.5 14.3
UAms_Anserini_rm3 176 10 2013.2 2015 16.8 3.0 1376.6 1272.5 14.5 14.4
UAms_CE100 176 10 2012.6 2015 20.5 3.0 1192.5 1115.0 14.5 14.4
UAms_CE100_CAR 176 10 2012.6 2015 18.0 3.0 1151.4 1081.0 12.5 12.8
UAms_CE1K 176 10 2012.5 2015 19.4 3.0 1147.0 1061.0 14.5 14.4
UAms_CE1K_CAR 176 10 2012.3 2015 18.5 3.0 1083.2 1009.0 12.4 12.7
GPL Base 176 10 2011.8 2014 13.1 2.0 910.5 970.5 14.3 14.3
GPL Domain Adapt 176 10 2011.9 2014 13.7 2.0 970.3 971.5 14.3 14.2
GPL Domain Adapt Remining 176 10 2011.7 2014 21.3 2.0 953.9 980.0 14.2 14.2

Table 4 shows the year of publication of the top 10 results retrieved for our lay user’s popular science
query. The systems retrieve publications with a median recency of 2015, ensuring that our lay user
is consulting recent information not yet outdated or revised by more recent publications. This is an
encouraging result as standard bibliometric literature ranking approaches have a strong bias for older
publications given the fact that citations accumulate over time. But does this mean the results are not
noteworthy and lack importance?
Table 4 also shows the number of citations of the top 10 results retrieved. We observe that our

approach is retrieving results with signi�cantly higher average numbers of citations, when compared
to the baseline lexical rankers, with a gain from 17 to 21 citations on average. The GPL runs use a
di�erent baseline, but the di�erence between standard GPL, similar to the non-adapted baseline, and
the novel remining approach is striking and obtains the highest average citation score. This higher
average citation count is reassuring as it signals high levels of authoritativeness of the retrieved results.
As citations are sparse and skewed, the median number of citations is only 2-3 throughout. This also
signals that our approach is able to attract very highly cited publications into the top 10 results, leading
to the signi�cant average increase.

Readability The second aspect of interest is the readability of the retrieved information. We have
seen above that the approaches are e�ective for retrieving relevant scienti�c papers. However, although
topically relevant these paper may contain very advance scienti�c information that is not easy to
understand and interpret by lay users. Recall that this was the motivation to use complexity-aware
retrieval approaches [8]. Can complexity-aware search help retrieve relevant and accessible scienti�c
text?

Table 4 shows the Flesch-Kincaid Grade Level (FKGL) readability score of the top 10 results retrieved
for our lay user’s popular science query. We observe that the lexical and neural rankers retrieve topically
relevant information without taking the text complexity into account. Both lexical and neural rankers
retrieve information with an FKGL of 14-15 corresponding to university level text complexity. The same
holds for the domain adapted runs. This is not surprizing as we have an extensive scienti�c corpus
with an average text complexity of 14-15 re�ecting this.

Earlier we observed that our complexity-aware retrieval systems obtained almost almost the same
e�ectiveness in terms of retrieval e�ectiveness. Hence this complexity aware approach was able to rank
a similar number of topically relevant documents in the top 10 as standard lexical and neural ranking
approaches. But is the complexity-aware approach able to rank more accessible content for our lay user
issuing a popular science query?

Table 4 shows indeed favorable readability levels for the complexity aware search, with an FKGL of
12-13 corresponding to the exit level of compulsory education. Hence the complexity aware search
approach is able to retrieve relevant and accessible content to our lay user. The retrieved source abstracts
have a similar readability level as targeted by text simpli�cation systems as discussed in Section 3.3.



#2 Complexity-aware 
retrieval works

We can avoid abstracts with high text complexity!



Can we Simplify 
Scientific Text?

#3 Generative AI models for Scientific Text Simplification



Scientific Text Simplification (1/3)

• Lot’s of runs…. 

• TL;DR: it “works” FKGL as low as 11% and SARI as high as 36%…

Table 12
Results for CLEF 2024 SimpleText: Task 3.1 sentence-level (top) and Task 3.2 abstract-level (bottom) text simplifi-
cation on the test set

run_id co
un

t

FK
G
L

SA
R
I

BL
EU

C
om

pr
es
si
on

ra
tio

Se
nt
en

ce
sp

lit
s

Le
ve

ns
ht
ei
n
si
m
ila

ri
ty

Ex
ac
tc

op
ie
s

A
dd

iti
on

sp
ro
po

rt
io
n

D
el
et
io
ns

pr
op

or
tio

n

Le
xi
ca
lc

om
pl
ex

ity
sc
or
e

Source 578 13.65 12.02 19.76 1.00 1.00 1.00 1.00 0.00 0.00 8.80
Reference 578 8.86 100.00 100.00 0.70 1.06 0.60 0.01 0.27 0.54 8.51

UAms_GPT2_Check 578 11.47 29.91 15.10 1.02 1.23 0.87 0.14 0.17 0.14 8.68
UAms_GPT2 578 10.91 29.73 13.07 1.30 1.50 0.79 0.06 0.29 0.12 8.63
UAms_Wiki_BART_Snt 578 12.13 27.45 21.56 0.85 0.99 0.89 0.32 0.02 0.16 8.73
UAms_Cochrane_BART_Snt 578 13.22 18.45 19.21 0.95 0.99 0.96 0.59 0.02 0.07 8.77

Source 103 13.64 12.81 21.36 1.00 1.00 1.00 1.00 0.00 0.00 8.88
Reference 103 8.91 100.00 100.00 0.67 1.04 0.60 0.00 0.23 0.53 8.66

UAms_GPT2_Check_Abs 103 12.85 36.47 13.12 0.91 0.92 0.59 0.00 0.18 0.45 8.73
UAms_Cochrane_BART_Doc 103 14.46 33.51 9.39 0.65 0.58 0.54 0.04 0.06 0.53 8.80
UAms_Cochrane_BART_Par 103 16.53 31.58 15.40 1.08 0.80 0.67 0.04 0.15 0.32 8.81
UAms_GPT2_Check_Snt 103 11.57 30.71 15.24 1.54 1.70 0.78 0.00 0.27 0.13 8.77
UAms_Wiki_BART_Doc 103 15.68 26.50 15.11 1.51 1.14 0.76 0.01 0.25 0.11 8.79
UAms_Wiki_BART_Par 103 13.11 23.92 19.49 1.39 1.37 0.81 0.01 0.11 0.10 8.86

human reference simpli�cations. For abstract level simpli�cation it is encouraging to see that the
Cochrane model trained on scienti�c data is slightly outperforming the Wiki-Auto trained model. Third,
the paragraph and document level models trained on Wiki-Auto and Cochrane do again not outperform
the sentence level simpli�cations, under the conditions of the task’s train data. The train data is derived
from the sentence level scienti�c text simpli�cation references from the earlier years of the track. Proper
document level text simpli�cation approaches lead to considerable deletions, and perform reasonable
given their far more succinct output.

Table 12 shows the Task 3 results for both sentence-level (top) and abstract-level (bottom) scienti�c
text simpli�cations. We make again a number of observations. First, looking at the GPT-2 models, we
see again low FKGL scores indicating favorable readability, with reasonable SARI and BLEU scores. The
abstract level simpli�cation clearly outperforms the merged sentence level simpli�cations, despite a far
more succinct output. Second, looking at the BART model trained on Wiki-Auto and on Cochrane-Auto
lay summaries, we see that the Cochrane model trained on scienti�c data is clearly outperforming
the Wiki-Auto trained model on SARI for document level text simpli�cation. Third, the paragraph
and document level models trained on Wiki-Auto and Cochrane do again not outperform the sentence
level simpli�cations, under the conditions of the task’s test data based on aggregated human reference
sentence simpli�cations. These models take discourse structure into account, or may merge or reorder
sentences, and are less focused on single sentence wordsmithing, or promoting sentence splits.

3.3.2. Analysis

In this section, we look analyze the output of our systems by realigning the simpli�ed text predictions
to the source sentences.



Scientific Text Simplification (2/3)

• Document level text simplification outcompetes sentence level  

• TL;DR: long input can be risky, but context and discourse structure helps

Table 12
Results for CLEF 2024 SimpleText: Task 3.1 sentence-level (top) and Task 3.2 abstract-level (bottom) text simplifi-
cation on the test set

run_id co
un

t

FK
G
L

SA
R
I

BL
EU

C
om

pr
es
si
on

ra
tio

Se
nt
en

ce
sp

lit
s

Le
ve

ns
ht
ei
n
si
m
ila

ri
ty

Ex
ac
tc

op
ie
s

A
dd

iti
on

sp
ro
po

rt
io
n

D
el
et
io
ns

pr
op

or
tio

n

Le
xi
ca
lc

om
pl
ex

ity
sc
or
e

Source 578 13.65 12.02 19.76 1.00 1.00 1.00 1.00 0.00 0.00 8.80
Reference 578 8.86 100.00 100.00 0.70 1.06 0.60 0.01 0.27 0.54 8.51

UAms_GPT2_Check 578 11.47 29.91 15.10 1.02 1.23 0.87 0.14 0.17 0.14 8.68
UAms_GPT2 578 10.91 29.73 13.07 1.30 1.50 0.79 0.06 0.29 0.12 8.63
UAms_Wiki_BART_Snt 578 12.13 27.45 21.56 0.85 0.99 0.89 0.32 0.02 0.16 8.73
UAms_Cochrane_BART_Snt 578 13.22 18.45 19.21 0.95 0.99 0.96 0.59 0.02 0.07 8.77

Source 103 13.64 12.81 21.36 1.00 1.00 1.00 1.00 0.00 0.00 8.88
Reference 103 8.91 100.00 100.00 0.67 1.04 0.60 0.00 0.23 0.53 8.66

UAms_GPT2_Check_Abs 103 12.85 36.47 13.12 0.91 0.92 0.59 0.00 0.18 0.45 8.73
UAms_Cochrane_BART_Doc 103 14.46 33.51 9.39 0.65 0.58 0.54 0.04 0.06 0.53 8.80
UAms_Cochrane_BART_Par 103 16.53 31.58 15.40 1.08 0.80 0.67 0.04 0.15 0.32 8.81
UAms_GPT2_Check_Snt 103 11.57 30.71 15.24 1.54 1.70 0.78 0.00 0.27 0.13 8.77
UAms_Wiki_BART_Doc 103 15.68 26.50 15.11 1.51 1.14 0.76 0.01 0.25 0.11 8.79
UAms_Wiki_BART_Par 103 13.11 23.92 19.49 1.39 1.37 0.81 0.01 0.11 0.10 8.86

human reference simpli�cations. For abstract level simpli�cation it is encouraging to see that the
Cochrane model trained on scienti�c data is slightly outperforming the Wiki-Auto trained model. Third,
the paragraph and document level models trained on Wiki-Auto and Cochrane do again not outperform
the sentence level simpli�cations, under the conditions of the task’s train data. The train data is derived
from the sentence level scienti�c text simpli�cation references from the earlier years of the track. Proper
document level text simpli�cation approaches lead to considerable deletions, and perform reasonable
given their far more succinct output.

Table 12 shows the Task 3 results for both sentence-level (top) and abstract-level (bottom) scienti�c
text simpli�cations. We make again a number of observations. First, looking at the GPT-2 models, we
see again low FKGL scores indicating favorable readability, with reasonable SARI and BLEU scores. The
abstract level simpli�cation clearly outperforms the merged sentence level simpli�cations, despite a far
more succinct output. Second, looking at the BART model trained on Wiki-Auto and on Cochrane-Auto
lay summaries, we see that the Cochrane model trained on scienti�c data is clearly outperforming
the Wiki-Auto trained model on SARI for document level text simpli�cation. Third, the paragraph
and document level models trained on Wiki-Auto and Cochrane do again not outperform the sentence
level simpli�cations, under the conditions of the task’s test data based on aggregated human reference
sentence simpli�cations. These models take discourse structure into account, or may merge or reorder
sentences, and are less focused on single sentence wordsmithing, or promoting sentence splits.

3.3.2. Analysis

In this section, we look analyze the output of our systems by realigning the simpli�ed text predictions
to the source sentences.



Scientific Text Simplification (3/3)

• Scientific text simplification can outcompete generic models  

• Trained on Cochrane plain English summaries (biomedical).

Table 12
Results for CLEF 2024 SimpleText: Task 3.1 sentence-level (top) and Task 3.2 abstract-level (bottom) text simplifi-
cation on the test set
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Source 578 13.65 12.02 19.76 1.00 1.00 1.00 1.00 0.00 0.00 8.80
Reference 578 8.86 100.00 100.00 0.70 1.06 0.60 0.01 0.27 0.54 8.51

UAms_GPT2_Check 578 11.47 29.91 15.10 1.02 1.23 0.87 0.14 0.17 0.14 8.68
UAms_GPT2 578 10.91 29.73 13.07 1.30 1.50 0.79 0.06 0.29 0.12 8.63
UAms_Wiki_BART_Snt 578 12.13 27.45 21.56 0.85 0.99 0.89 0.32 0.02 0.16 8.73
UAms_Cochrane_BART_Snt 578 13.22 18.45 19.21 0.95 0.99 0.96 0.59 0.02 0.07 8.77

Source 103 13.64 12.81 21.36 1.00 1.00 1.00 1.00 0.00 0.00 8.88
Reference 103 8.91 100.00 100.00 0.67 1.04 0.60 0.00 0.23 0.53 8.66

UAms_GPT2_Check_Abs 103 12.85 36.47 13.12 0.91 0.92 0.59 0.00 0.18 0.45 8.73
UAms_Cochrane_BART_Doc 103 14.46 33.51 9.39 0.65 0.58 0.54 0.04 0.06 0.53 8.80
UAms_Cochrane_BART_Par 103 16.53 31.58 15.40 1.08 0.80 0.67 0.04 0.15 0.32 8.81
UAms_GPT2_Check_Snt 103 11.57 30.71 15.24 1.54 1.70 0.78 0.00 0.27 0.13 8.77
UAms_Wiki_BART_Doc 103 15.68 26.50 15.11 1.51 1.14 0.76 0.01 0.25 0.11 8.79
UAms_Wiki_BART_Par 103 13.11 23.92 19.49 1.39 1.37 0.81 0.01 0.11 0.10 8.86

human reference simpli�cations. For abstract level simpli�cation it is encouraging to see that the
Cochrane model trained on scienti�c data is slightly outperforming the Wiki-Auto trained model. Third,
the paragraph and document level models trained on Wiki-Auto and Cochrane do again not outperform
the sentence level simpli�cations, under the conditions of the task’s train data. The train data is derived
from the sentence level scienti�c text simpli�cation references from the earlier years of the track. Proper
document level text simpli�cation approaches lead to considerable deletions, and perform reasonable
given their far more succinct output.

Table 12 shows the Task 3 results for both sentence-level (top) and abstract-level (bottom) scienti�c
text simpli�cations. We make again a number of observations. First, looking at the GPT-2 models, we
see again low FKGL scores indicating favorable readability, with reasonable SARI and BLEU scores. The
abstract level simpli�cation clearly outperforms the merged sentence level simpli�cations, despite a far
more succinct output. Second, looking at the BART model trained on Wiki-Auto and on Cochrane-Auto
lay summaries, we see that the Cochrane model trained on scienti�c data is clearly outperforming
the Wiki-Auto trained model on SARI for document level text simpli�cation. Third, the paragraph
and document level models trained on Wiki-Auto and Cochrane do again not outperform the sentence
level simpli�cations, under the conditions of the task’s test data based on aggregated human reference
sentence simpli�cations. These models take discourse structure into account, or may merge or reorder
sentences, and are less focused on single sentence wordsmithing, or promoting sentence splits.

3.3.2. Analysis

In this section, we look analyze the output of our systems by realigning the simpli�ed text predictions
to the source sentences.



#3 Document level text 
simplification improves

We can reduce text complexity of scientific text!



The Truth, the Whole Truth 
and Nothing but the Truth

#4 Generative AI Models Hallucinate



Generative AI Models for Text Simplification

• LLMs used in generative mode:  

• Generate the text simplification as text (prompt) completion 

• But may easily generate additional content! 

Table 14
Results for the SimpleText Task 2: Selecting rare terms

Run Total Evaluated Score
+Limits +Limits

UAms_Task_2_RareIDF 675090 1293 1145 309 241

Table 15
Example of SimpleText Task 3 output versus input: deletions, insertions, and whole sentence insertions

Topic G07.1, Document 2111507945
The growth of social media provides a convenient communication scheme way for people to
communicate , but at the same time it becomes a hotbed of misinformation .

��The This wide spread
of misinformation over social media is injurious to public interest . It is di�icult to separate fact from
fiction when talking about social media .

��We design a framework , which integrates combines collec-
tive intelligence and machine intelligence , to help identify misinformation .

��The basic idea is : ( 1 )
automatically index the expertise of users according to their microblog contents posts ; and ( 2 ) match
the experts with the same information given to suspected misinformation .

��By sending the suspected
misinformation to appropriate experts , we can collect gather the assessments of experts relevant data
to judge the credibility of the information , and help refute misinformation .

��In this paper , we focus on
look at expert finding for misinformation identification . We ask experts to identify the source of the
misinformation , and how it is spread .

��We propose a tag-based method approach to index indexing
the expertise of microblog users with social tags . Our approach will allow us to identify which posts
are most relevant and which are not .

��Experiments on a real world dataset demonstrate show the
e�ectiveness of our method approach for expert finding with respect to misinformation identification
in microblogs .

Table 16
Results for SimpleText Task 3: zero-shot GPT2 text simplification

Run #Snt FKGL SARI BLEU Comp. Split L.Sim.
UAms_Task_3_Large_KIS150 648 11.40 36.38 25.82 1.17 1.42 0.79
UAms_Task_3_Large_KIS150_Clip 648 11.93 36.66 28.68 0.99 1.23 0.85

UAms_Task_3_Large_KIS150 245 10.51 33.02 14.60 1.27 1.48 0.76
UAms_Task_3_Large_KIS150_Clip 245 11.13 33.47 16.60 1.02 1.23 0.83



Quantify and Remove Hallucination

• Hallucination main problem in LLMs: Generative models give more than asked, even for up to 29%! 

• Our “Check” removes hallucination by comparing with input alignment.   

• Standard evaluation measures are “blind” for hallucination: key to quantify and remove.

Table 14
Analysis of SimpleText Analysis: Spurious generation for sentence-level (top) and abstract-level (bottom) scientific
text simplification

Run # Input Sentences/Abstracts Spurious Content
Number Fraction

UAms-1_GPT2 4,797 1,390 0.29
UAms-1_GPT2_Check 4,797 3 0.00
UAms-1_Wiki_BART_Snt 4,797 14 0.00
UAms-1_Cochrane_BART_Snt 4,797 25 0.01

UAms-2_GPT2_Check_Snt 782 111 0.14
UAms-2_GPT2_Check_Abs 782 1 0.00
UAms-2_Wiki_BART_Par 782 46 0.06
UAms-2_Wiki_BART_Doc 782 74 0.09
UAms-2_Cochrane_BART_Par 782 28 0.04
UAms-2_Cochrane_BART_Doc 782 2 0.00

removing spurious generation (or “hallucination”) of the output. These results highlight and quantify
the severity of this problem in generative text simpli�cation models such as our GPT2 model. At the
same time, it o�ers a practical approach to tackle this undesirable aspect head-on.

4. Discussion and Conclusions

This paper detailed the University of Amsterdam’s participation in the CLEF 2024 SimpleText track. We
conducted a range of experiments, for each of the three tasks of the track.

For Task 1 on Content Selection, we observed a very solid performance for zero-shot neural reranking,
as well as competitive e�ectivess for complexity-aware rankers that purposely avoid to retrieve results
with a high text complexity.

For Task 2 on Complexity Spotting, we submitted preliminary approaches based on standard term
weighting, and observed that naive approaches can help locate di�cult terms.

For Task 3 on Text Simpli�cation, we experimented with a range of models and approaches, and
observed that sentence-level simpli�cation approaches can be very e�ective to reduce the complexity of
scienti�c text, and that paragraph and abstract level simpli�cations lead to far shorter output including
whole sentence deletions.
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#4 Need to quantify and 
remove hallucination

Addressing one of the main challenges in generative AI!



Complex  
Term Spotting

#5 What term is (not) hard to understand?



Lay Users exhibit Great Variation 

• Lay User see lots of difficult terms (and each different ones)! 

• Simple baseline base on corpus IDF makes reasonable choices 

Table 7
Example of SimpleText Task 2.1: source and references.

Sentence G06.2_2810968146_2
Source The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Reference [’ResNet-18 variant’, ’braking’, ’braking’, ’f1 car’, ’front’, ’image’, ’model’, ’optimal label’, ’resnet-

18’, ’simulated F1 car’, ’steering’, ’steering’, ’throttle’, ’throttle’, ’to be fed’, ’to output’]
Di�iculty [’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’d’, ’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’m’]
Source "d" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "m" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "e" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Prediction [’resnet-18’, ’throttle’, ’braking’, ’f1’, ’fed’]

Table 8
Example of SimpleText Task 2.1: Frequency of terms spotted.

Terms/Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29
Frequency (train) 53 99 90 100 44 55 23 22 16 20 3 5 4 4 1 7 2 2 1
Frequency (test) 18 31 61 65 45 32 26 16 10 3 2 4

Table 9
Example of SimpleText Task 2.1: Spotted term or concept.

Source Number of Terms Occurs in Sentence Not in Sentence
Train 2,579 2,098 481
Train (case folding) 2,579 2,334 245
Test 1,440 1,312 128
Test (case folding) 1,440 1,347 93

Table 10
CLEF 2024 SimpleText Task 2: Top 1 Semantic Match

Run Rouge BERTScore
1 2 L Lsum P R F1

Train 0.3729 0.0946 0.3723 0.3733 0.92 0.93 0.92
Test 0.3825 0.0957 0.3810 0.3825 0.93 0.93 0.92

variation is making the prediction of all terms neigh impossible, and makes averaging over terms an
unreliable indicator of the per sentence performance. Evaluation over the sets of top retrieved terms, as
we did in Table 6 shows indeed reasonable performance for our basic approach.

The recall of our approach is relatively low, as the baseline rarest term approach cannot �nd multi-
word phrases. In addition, many of the ground truth terms do not literally appear in the sentence, and
require case folding, morphologically normalization, or even more complex transformations to correctly
align with the exact orthography of the scienti�c text.
Table 9 quanti�es how often the spotted term or phrase is literally occurring in the sentences. We

observe a fraction varying from 6.5% to 18.7%. While many cases concern morphological normalization
that is useful to con�ate similar concepts across di�erent sentences (base form of verbs, singular for
nouns etc). However, the evaluation measures will treat such cases as a failed match, and recall oriented
measures should be treated with care.



Lay Users also “hallucinate”?

• Up to 29 different terms/concepts, per sentence! 

• And many “spotted terms” don’t literally occur in the sentence!

Table 7
Example of SimpleText Task 2.1: source and references.

Sentence G06.2_2810968146_2
Source The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Reference [’ResNet-18 variant’, ’braking’, ’braking’, ’f1 car’, ’front’, ’image’, ’model’, ’optimal label’, ’resnet-

18’, ’simulated F1 car’, ’steering’, ’steering’, ’throttle’, ’throttle’, ’to be fed’, ’to output’]
Di�iculty [’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’d’, ’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’m’]
Source "d" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "m" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "e" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Prediction [’resnet-18’, ’throttle’, ’braking’, ’f1’, ’fed’]

Table 8
Example of SimpleText Task 2.1: Frequency of terms spotted.

Terms/Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29
Frequency (train) 53 99 90 100 44 55 23 22 16 20 3 5 4 4 1 7 2 2 1
Frequency (test) 18 31 61 65 45 32 26 16 10 3 2 4

Table 9
Example of SimpleText Task 2.1: Spotted term or concept.

Source Number of Terms Occurs in Sentence Not in Sentence
Train 2,579 2,098 481
Train (case folding) 2,579 2,334 245
Test 1,440 1,312 128
Test (case folding) 1,440 1,347 93

Table 10
CLEF 2024 SimpleText Task 2: Top 1 Semantic Match

Run Rouge BERTScore
1 2 L Lsum P R F1

Train 0.3729 0.0946 0.3723 0.3733 0.92 0.93 0.92
Test 0.3825 0.0957 0.3810 0.3825 0.93 0.93 0.92

variation is making the prediction of all terms neigh impossible, and makes averaging over terms an
unreliable indicator of the per sentence performance. Evaluation over the sets of top retrieved terms, as
we did in Table 6 shows indeed reasonable performance for our basic approach.

The recall of our approach is relatively low, as the baseline rarest term approach cannot �nd multi-
word phrases. In addition, many of the ground truth terms do not literally appear in the sentence, and
require case folding, morphologically normalization, or even more complex transformations to correctly
align with the exact orthography of the scienti�c text.
Table 9 quanti�es how often the spotted term or phrase is literally occurring in the sentences. We

observe a fraction varying from 6.5% to 18.7%. While many cases concern morphological normalization
that is useful to con�ate similar concepts across di�erent sentences (base form of verbs, singular for
nouns etc). However, the evaluation measures will treat such cases as a failed match, and recall oriented
measures should be treated with care.

Table 7
Example of SimpleText Task 2.1: source and references.

Sentence G06.2_2810968146_2
Source The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Reference [’ResNet-18 variant’, ’braking’, ’braking’, ’f1 car’, ’front’, ’image’, ’model’, ’optimal label’, ’resnet-

18’, ’simulated F1 car’, ’steering’, ’steering’, ’throttle’, ’throttle’, ’to be fed’, ’to output’]
Di�iculty [’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’d’, ’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’m’]
Source "d" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "m" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "e" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Prediction [’resnet-18’, ’throttle’, ’braking’, ’f1’, ’fed’]

Table 8
Example of SimpleText Task 2.1: Frequency of terms spotted.

Terms/Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29
Frequency (train) 53 99 90 100 44 55 23 22 16 20 3 5 4 4 1 7 2 2 1
Frequency (test) 18 31 61 65 45 32 26 16 10 3 2 4

Table 9
Example of SimpleText Task 2.1: Spotted term or concept.

Source Number of Terms Occurs in Sentence Not in Sentence
Train 2,579 2,098 481
Train (case folding) 2,579 2,334 245
Test 1,440 1,312 128
Test (case folding) 1,440 1,347 93

Table 10
CLEF 2024 SimpleText Task 2: Top 1 Semantic Match

Run Rouge BERTScore
1 2 L Lsum P R F1

Train 0.3729 0.0946 0.3723 0.3733 0.92 0.93 0.92
Test 0.3825 0.0957 0.3810 0.3825 0.93 0.93 0.92

variation is making the prediction of all terms neigh impossible, and makes averaging over terms an
unreliable indicator of the per sentence performance. Evaluation over the sets of top retrieved terms, as
we did in Table 6 shows indeed reasonable performance for our basic approach.

The recall of our approach is relatively low, as the baseline rarest term approach cannot �nd multi-
word phrases. In addition, many of the ground truth terms do not literally appear in the sentence, and
require case folding, morphologically normalization, or even more complex transformations to correctly
align with the exact orthography of the scienti�c text.
Table 9 quanti�es how often the spotted term or phrase is literally occurring in the sentences. We

observe a fraction varying from 6.5% to 18.7%. While many cases concern morphological normalization
that is useful to con�ate similar concepts across di�erent sentences (base form of verbs, singular for
nouns etc). However, the evaluation measures will treat such cases as a failed match, and recall oriented
measures should be treated with care.



Evaluation Requires Careful Analysis… 

• We return max. 5 single terms per sentence: 

• Exact match P/R/F not high (12%), Top 1 Rouge-1 38%, but BERTScore 92%!

Table 7
Example of SimpleText Task 2.1: source and references.

Sentence G06.2_2810968146_2
Source The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Reference [’ResNet-18 variant’, ’braking’, ’braking’, ’f1 car’, ’front’, ’image’, ’model’, ’optimal label’, ’resnet-

18’, ’simulated F1 car’, ’steering’, ’steering’, ’throttle’, ’throttle’, ’to be fed’, ’to output’]
Di�iculty [’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’e’, ’d’, ’d’, ’e’, ’e’, ’e’, ’e’, ’e’, ’m’]
Source "d" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "m" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Source "e" The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car,

and outputs optimal labels for steering, throttle, braking.
Prediction [’resnet-18’, ’throttle’, ’braking’, ’f1’, ’fed’]

Table 8
Example of SimpleText Task 2.1: Frequency of terms spotted.

Terms/Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29
Frequency (train) 53 99 90 100 44 55 23 22 16 20 3 5 4 4 1 7 2 2 1
Frequency (test) 18 31 61 65 45 32 26 16 10 3 2 4

Table 9
Example of SimpleText Task 2.1: Spotted term or concept.

Source Number of Terms Occurs in Sentence Not in Sentence
Train 2,579 2,098 481
Train (case folding) 2,579 2,334 245
Test 1,440 1,312 128
Test (case folding) 1,440 1,347 93

Table 10
CLEF 2024 SimpleText Task 2: Top 1 Semantic Match

Run Rouge BERTScore
1 2 L Lsum P R F1

Train 0.3729 0.0946 0.3723 0.3733 0.92 0.93 0.92
Test 0.3825 0.0957 0.3810 0.3825 0.93 0.93 0.92

variation is making the prediction of all terms neigh impossible, and makes averaging over terms an
unreliable indicator of the per sentence performance. Evaluation over the sets of top retrieved terms, as
we did in Table 6 shows indeed reasonable performance for our basic approach.

The recall of our approach is relatively low, as the baseline rarest term approach cannot �nd multi-
word phrases. In addition, many of the ground truth terms do not literally appear in the sentence, and
require case folding, morphologically normalization, or even more complex transformations to correctly
align with the exact orthography of the scienti�c text.
Table 9 quanti�es how often the spotted term or phrase is literally occurring in the sentences. We

observe a fraction varying from 6.5% to 18.7%. While many cases concern morphological normalization
that is useful to con�ate similar concepts across di�erent sentences (base form of verbs, singular for
nouns etc). However, the evaluation measures will treat such cases as a failed match, and recall oriented
measures should be treated with care.

Table 5
Evaluation of SimpleText Task 2 (test data).

Run Recall Terms "d"
Overall Average Recall Precision

UAms_Task2-1_RareIDF 0.0854 0.0942 0.0259 0.0894

Table 6
Evaluation of SimpleText Task 2: submission UAms_Task2-1_RareIDF, only unique terms in the train (including
validation) and test data.

Run Precision Recall F1 Score
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Train 0.16 0.14 0.13 0.13 0.12 0.04 0.07 0.10 0.13 0.15 0.06 0.09 0.11 0.11 0.12
Test 0.18 0.16 0.14 0.13 0.12 0.05 0.08 0.10 0.12 0.14 0.07 0.10 0.11 0.12 0.12

3.2. Task 2: Complexity Spotting

We continue with Task 2, asking to identify and explain di�cult concepts.

3.2.1. Results

Task 2.1 Table 5 shows the performance of the Task 2 submission on the test data. At the time of
writing, these score were released as (preliminary) scores without much further explanation.

The o�cial results seem to focus entirely on recall aspects, or retrieving all terms annotated by the
experts. Our simple approach is not expected to do well in terms of recall. We will conduct a more
precision oriented evaluation below as additional analysis.

Task 2.3 There is no train data for Task 2.3 released, nor any test results made available at the time of
writing. We hope and expect that these results will be released in time for the CLEF conferences in
Grenoble.

3.2.2. Analysis

Table 6 shows the performance of the Task 2 submission on the train and test data. Due to the very
limited data available, we treat spot here any terms. We included the complexity level as graded score,
in order to �lter the Boolean measures on minimal relevance score.5 On the train and test data of earlier
years, performance peaked around spotting 3 terms per sentence. Due to the many experts annotating
the same set of sentences, we see that both recall and F1 increase over ranks and the highest scores
are retrieved for spotting 5 rare terms per sentences. Overall, our simple approach achieves an MRR
of 0.2542 (train) and 0.2741 (test) and, taking the di�culty level into account, an NDCG@5 of 0.1446
(train) and 0.1469 (test).

Table 7 shows an example sentence with references. In this example, our approach predicts 5 terms,
that match one of the annotated references. The top ranked candidate matches one of the references
annotated as di�cult ("d"). There is a striking number of 16 references, with about 11 unique reference
terms. Some references occur in variants (e.g., "simulated F1 car" is rated "d", whereas "F1 car" is rated
"e"). Several references do not literally occur in the source sentence: we observe di�erences in case
("ResNet-18" vs. "resnet-18), plural/singular ("labels" vs. "label", "images" vs. "image"), and verb tense
("is fed" vs. "to be fed", "outputs" vs. "to output").

Table 8 shows the frequency of spotted terms on the train data. We observe a striking variation
with 53 sentences having 1 complex terms, and 12 sentences having more than 15 complex terms. This
5Tables not shown as they exhibit the same qualitative pattern, but at the obvious lower score level.



#5 Complex term 
spotting is complex…

Tricky to evaluate due to user and per sentence variation



What Happens When Laypersons 
Search Scientific Articles?

#1 Scientific text representations improve 
#2 Complexity-aware retrieval works (FKGL ~ 12) 

#3 Scientific text simplification reduces complexity 
#4 Need to quantify and remove hallucination 

#5 Complex term spotting is complex…



Q&A
Thanks to Jan Bakker, Göksenin Yüksel, and David Rau!

More details in the paper https://ceur-ws.org/Vol-3740/paper-310.pdf


