University of Amsterdam at the CLEF 2024 SimpleText Track

Jaap Kamps, Jan Bakker, Göksenin Yüksel University of Amsterdam

CLEF 2024 SimpleText Track, September 9, 2024, Grenoble, France

Motivation Misinfo / Disinfo / Fake News

- Everyone agrees on the importance of objective and reliable information
- Citizens avoid scientific information as they assume it is too complex
- Can we better understand barriers to access? even remove them?

י"הההה FAKE ניי ייי יו			FAKEFAKE FAKEFAKEFAKE FAKEFAKEFAKEFAKE FAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKE	FAKEFAK
FAKEFAKE FAKE FAKEFAKEFAKE FAKEFAKEFAKE FAKEFAKEFAKE	ͳͲϜ ΑΚ ΕͲͲͳͳϿ ϝ ΑΚΕ ϫϟϝϫϗͼ <u>Ϸ</u> ϿϷϫϝ Δ κε			

		AFAKEAKE AKE FAKE FAKE FAKE FAKE FAKE	AREFAKE AREFAKE ARE ARE ARE ARE ARE ARE ARE ARE ARE AR	AKEFAKEFAKE FAKE	FAKE FAKE FAKE FAKE FAKE FAKE FAKE FAKE
--	--	--	--	---	--

ТАКЕТАКЕ ГАКЕ ГАКЕТАКЕ ГАКЕ ГАКЕТАКЕТАКЕТАКЕ ГАКЕТА	FAKEFAKE FAKEFAKEFAKE FAKEFAKE FAKEFAKEFAKE FAKEFAKEFAKE FAKEFAKEFAKEFAKE FAKEFAKEFAKEFAKEFAKE FAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKEFAKE	FAKE FAKE FAKE FAKE FAKE FAKE FAKE FAKE
	SFAKEFAKEFAKE A FAKE MI FAKE FAKEFAKEFAKE FAKEFAKEFAKE FAKEFAKE	

What Happens When Laypersons Search Scientific Articles?

Experiments Complexity-Aware Search and Scientific Text Simplification

Task	Run	Ι
1	UAms_Task1_Anserini_bm25	E
1	UAms_Task1_Anserini_rm3	F
1	UAms_Task1_CE100	(
1	UAms_Task1_CE1K	(
1	UAms_Task1_CE100_CAR	(
1	UAms_Task1_CE1K_CAR	(
2.1	UAms_Task2-1_RareIDF	l
2.3	UAms_Task2-3_Anserini_bm25	E
2.3	UAms_Task2-3_Anserini_rm3	F
3.1	UAms_Task3-1_GPT2	(
3.1	UAms_Task3-1_GPT2_Check	(
3.2	UAms_Task3-2_GPT2_Check_Snt	(
3.2	UAms_Task3-2_GPT2_Check_Abs	(
3.1	UAms_Task3-1_Wiki_BART_Snt	١
3.1	UAms_Task3-1_Cochrane_BART_Snt	(
3.2	UAms_Task3-2_Wiki_BART_Par	١
3.2	UAms_Task3-2_Cochrane_BART_Par	(
3.2	UAms_Task3-2_Wiki_BART_Doc	١
3.2	UAms_Task3-2_Cochrane_BART_Doc	(

Description

- BM25 baseline (Anserini, stemming)
- RM3 baseline (Anserini, stemming)
- Cross-encoder top 100
- Cross-encoder top 1,000
- Cross-encoder top 100 + Complexity filter
- Cross-encoder top 1,000 + Complexity filter
- Up to 5 rarest terms on idf from test-large 2023 BM25 baseline (Anserini, stemming) RM3 baseline (Anserini, stemming)
- **GPT-2** Sentence level GPT-2 Sentence level, Source checked GPT-2 Sentence level, Source checked, merged into abstracts GPT-2 Abstract level, Source checked Wikiauto trained BART sentence level simplification Cochrane trained BART sentence level simplification Wikiauto trained BART paragraph level simplification Cochrane trained BART paragraph level simplification Wikiauto trained BART document level simplification Cochrane trained BART document level simplification

Search for Scientific Text?

#1 Unsupervised Domain Adaptation

Domain Adaptation: Scientific Text Representations

Run	MRR	Precision				NDCG	Bpref	MAP	
		5	10	20	5	10	20		
GPL Base [†]	0.3752	0.2333	0.2100	0.1611	0.1823	0.1642	0.1465	0.3192	0.0654
GPL Domain Adapt [†]	0.5169	0.2733	0.2667	0.2233	0.2389	0.2240	0.2075	0.3600	0.0983
GPL Domain Adapt Remining [†]	0.5011	0.3133	0.3033	0.2467	0.2560	0.2412	0.2285	0.3732	0.1084

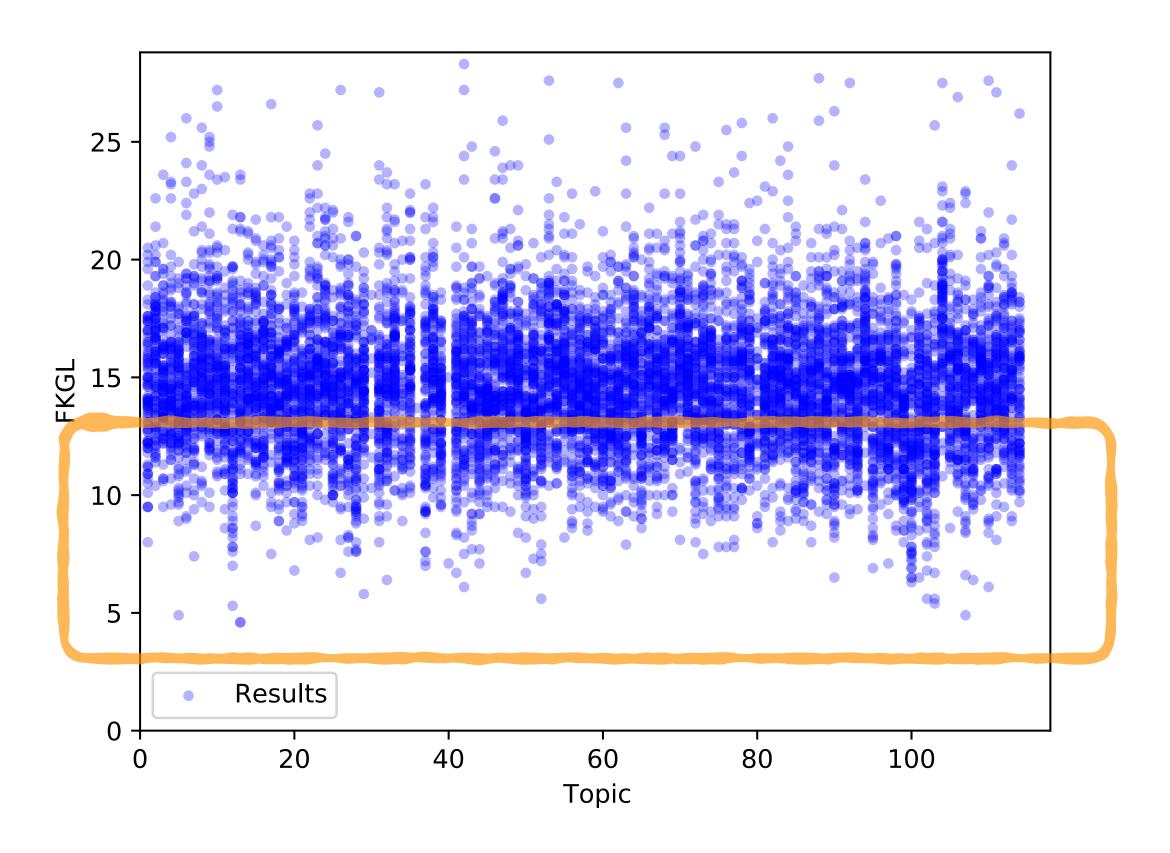
† Post-submission experiment.

- Base (zero shot) can be improved by domain adaptation!

• Zero shot neural rankers outcompete lexical, but is not tailored to domain

Unsupervised domain adaptation creates scientific text representations

NDCG@10 increases from 16% to 22% (GPL), even 24% (new R-GPL)!


• Training: query generation/fine-tuning, same inference time complexity

#1 Scientific Text Representations Matter

We can improve models by unsupervised domain adaptation!

Can we Avoid Complexity? **#2 Complexity-Aware Retrieval**

Complexity Variation per Topic

• For every request there are abstracts with the desirable readability level!

Complexity-Aware Ranking (1)

Run	MRR]	Precision			NDCG	Bpref	MAP	
		5	10	20	5	10	20		
UAms_Task1_Anserini	0.7187	0.5600	0.5500	0.4078	0.3867	0.3750	0.3507	0.3994	0.1973
UAms_Task1_Anserini_rm3	0.7878	0.5933	0.5700	0.3611	0.4039	0.3924	0.3282	0.4010	0.1824
UAms_Task1_CE100	0.6618	0.4800	0.5300	0.4044	0.3419	0.3654	0.3452	0.2657	0.1579
UAms_Task1_CE1K	0.5950	0.5133	0.5333	0.4033	0.3571	0.3672	0.3505	0.4031	0.1939
UAms_Task1_CE100_CAR	0.6420	0.5333	0.4700	0.3133	0.3435	0.3199	0.2741	0.2657	0.1321
UAms_Task1_CE1K_CAR	0.6611	0.5467	0.5133	0.2911	0.3800	0.3603	0.2778	0.2676	0.1348

- As observed since 2022: zero shot neural rankers outcompete lexical
 - NCDG@10 increase 39% to 42% on train, but drops 38% to 37% on test.
- Our Complexity-Aware runs very competitive in retrieval effectiveness
 - NDCG@10 only slightly decreases from 36.7% to 36.0%!

New baseline Anserini performs better than Elastic Search dominating the pool

Rel+Read: Complexity-Aware Ranking (2)

Run	Queries	Тор	Yea	Year		Citations		Length		GL
			Avg	Med	Avg	Med	Avg	Med	Avg	Med
UAms_Anserini_bm25	176	10	2012.9	2015	16.5	3.0	1355.9	1249.0	14.5	14.3
UAms_Anserini_rm3	176	10	2013.2	2015	16.8	3.0	1376.6	1272.5	14.5	14.4
UAms_CE100	176	10	2012.6	2015	20.5	3.0	1192.5	1115.0	14.5	14.4
UAms_CE100_CAR	176	10	2012.6	2015	18.0	3.0	1151.4	1081.0	12.5	12.8
UAms_CE1K	176	10	2012.5	2015	19.4	3.0	1147.0	1061.0	14.5	14.4
UAms_CE1K_CAR	176	10	2012.3	2015	18.5	3.0	1083.2	1009.0	12.4	12.7

- Standard rankers insensitive to text complexity
 - FKGL@10 of ~ 14 similar to the corpus as a whole
- Our Complexity-Aware Ranking runs retrieve more accessible abstracts
 - FKGL@10 drops to the desirable level of 12!

#2 Complexity-aware retrieval works

We can avoid abstracts with high text complexity!

Can we Simplify Scientific Text?

#3 Generative AI models for Scientific Text Simplification

Scientific	C 7	ех	t S	im	sion ratio	splits	ein similarity	ies	proportion	proportion	mplexity score
run_id	count	FKGL	SARI	BLEU	Compres	Sentence	Levenshte	Exact cop	Additions	Deletions	Lexical co
Source	578	13.65	12.02	19.76	1.00	1.00	1.00	1.00	0.00	0.00	8.80
Reference	578	8.86	100.00	100.00	0.70	1.06	0.60	0.01	0.27	0.54	8.51
UAms_GPT2_Check	578	11.47	29.91	15.10	1.02	1.23	0.87	0.14	0.17	0.14	8.68
UAms_GPT2	578	10.91	29.73	13.07	1.30	1.50	0.79	0.06	0.29	0.12	8.63
UAms_Wiki_BART_Snt	578	12.13	27.45	21.56	0.85	0.99	0.89	0.32	0.02	0.16	8.73
UAms_Cochrane_BART_Snt	578	13.22	18.45	19.21	0.95	0.99	0.96	0.59	0.02	0.07	8.77
Source	103	13.64	12.81	21.36	1.00	1.00	1.00	1.00	0.00	0.00	8.88
Reference	103	8.91	100.00	100.00	0.67	1.04	0.60	0.00	0.23	0.53	8.66
UAms_GPT2_Check_Abs	103	12.85	36.47	13.12	0.91	0.92	0.59	0.00	0.18	0.45	8.73
UAms_Cochrane_BART_Doc	103	14.46	33.51	9.39	0.65	0.58	0.54	0.04	0.06	0.53	8.80
UAms_Cochrane_BART_Par	103	16.53	31.58	15.40	1.08	0.80	0.67	0.04	0.15	0.32	8.81
UAms_GPT2_Check_Snt	103	11.57	30.71	15.24	1.54	1.70	0.78	0.00	0.27	0.13	8.77
UAms_Wiki_BART_Doc	103	15.68	26.50	15.11	1.51	1.14	0.76	0.01	0.25	0.11	8.79
UAms Wiki BART_Par	103	13.11	23.92	19.49	1.39	1.37	0.81	0.01	0.11	0.10	8.86

- Lot's of runs....
 - TL;DR: it "works" FKGL as low as 11% and SARI as high as 36%...

Scientific	; T	ех	t S	im	n ratio		similarity	tic	roportion	oportion	plexity score
run_id	count	FKGL	SARI	BLEU	Compressio	Sentence sp	Levenshtein	Exact copies	Additions p	Deletions pr	Lexical com
Source	578	13.65	12.02	19.76	1.00	1.00	1.00	1.00	0.00	0.00	8.80
Reference	578	8.86	100.00	100.00	0.70	1.06	0.60	0.01	0.27	0.54	8.51
UAms_GPT2_Check UAms_GPT2 UAms_Wiki_BART_Snt UAms_Cochrane_BART_Snt	578 578 578 578 578 578	11.47 10.91 12.13 13.22	29.91 29.73 27.45 18.45	15.10 13.07 21.56 19.21	1.02 1.30 0.85 0.95	1.23 1.50 0.99 0.99	0.87 0.79 0.89 0.96	0.14 0.06 0.32 0.59	0.27 0.17 0.29 0.02 0.02	0.14 0.12 0.16 0.07	8.68 8.63 8.73 8.77
Source	103	13.64	12.81	21.36	1.00	1.00	1.00	1.00	0.00	0.00	8.88
Reference	103	8.91	100.00	100.00	0.67	1.04	0.60	0.00	0.23	0.53	8.66
UAms_GPT2_Check_Abs	103	12.85	36.47	13.12	0.91	0.92	0.59	0.00	0.18	0.45	8.73
UAms_Cochrane_BART_Doc	103	14.46	33.51	9.39	0.65	0.58	0.54	0.04	0.06	0.53	8.80
UAms_Cochrane_BART_Par	103	16.53	31.58	15.40	1.08	0.80	0.67	0.04	0.15	0.32	8.81
UAms_GPT2_Check_Snt	103	11.57	30.71	15.24	1.54	1.70	0.78	0.00	0.27	0.13	8.77
UAms_Wiki_BART_Doc	103	15.68	26.50	15.11	1.51	1.14	0.76	0.01	0.25	0.11	8.79
UAms_Wiki_BART_Par	103	13.11	23.92	19.49	1.39	1.37	0.81	0.01	0.11	0.10	8.86

- Document level text simplification outcompetes sentence level
 - TL;DR: long input can be risky, but context and discourse structure helps

Scientific)	ех	t S	im	ession ratio	e splits	ntein <mark>sim</mark> ilarity	opies O	ns proportion	ns proportion	complexity score
run_id	count	FKGL	SARI	BLEU	Compre	Sentenc	Levensh	Exact co	Addition	Deletio	Lexical
Source	578	13.65	12.02	19.76	1.00	1.00	1.00	1.00	0.00	0.00	8.80
Reference	578	8.86	100.00	100.00	0.70	1.06	0.60	0.01	0.27	0.54	8.51
UAms_GPT2_Check UAms_GPT2 UAms_Wiki_BART_Snt UAms_Cochrane_BART_Snt	578 578 578 578 578	11.47 10.91 12.13 13.22	29.91 29.73 27.45 18.45	15.10 13.07 21.56 19.21	1.02 1.30 0.85 0.95	1.23 1.50 0.99 0.99	0.87 0.79 0.89 0.96	0.14 0.06 0.32 0.59	0.17 0.29 0.02 0.02	0.14 0.12 0.16 0.07	8.68 8.63 8.73 8.77
Source	103	13.64	12.81	21.36	1.00	1.00	1.00	1.00	0.00	0.00	8.88
Reference	103	8.91	100.00	100.00	0.67	1.04	0.60	0.00	0.23	0.53	8.66
UAms_GPT2_Check_Abs	103	12.85	36.47	13.12	0.91	0.92	0.59	0.00	0.18	0.45	8.73
UAms_Cochrane_BART_Doc	103	14.46	33.51	9.39	0.65	0.58	0.54	0.04	0.06	0.53	8.80
UAms_Cochrane_BART_Par	103	16.53	31.58	15.40	1.08	0.80	0.67	0.04	0.15	0.32	8.81
UAms_GPT2_Check_Snt	103	11.57	30.71	15.24	1.54	1.70	0.78	0.00	0.27	0.13	8.77
UAms_Wiki_BART_Doc	103	15.68	26.50	15.11	1.51	1.14	0.76	0.01	0.25	0.11	8.79
UAms Wiki BART_Par	103	13.11	23.92	19.49	1.39	1.37	0.81	0.01	0.11	0.10	8.86

- Scientific text simplification can outcompete generic models
 - Trained on Cochrane plain English summaries (biomedical).

#3 Document level text simplification improves

We can reduce text complexity of scientific text!

The Truth, the Whole Truth and Nothing but the Truth

#4 Generative AI Models Hallucinate

Generative AI Models for Text Simplification

Topic G07.1, Document 2111507945

The growth of social media provides a convenient communication scheme <u>way</u> for people <u>to</u> <u>communicate</u>, but at the same time it becomes a hotbed of misinformation . The This wide spread of misinformation over social media is injurious to public interest . <u>It is difficult to separate fact from</u> <u>fiction when talking about social media</u>. We design a framework , which <u>integrates combines</u> collective intelligence and machine intelligence , to help identify misinformation . The basic idea is : (1) automatically index the expertise of users according to their microblog contents <u>posts</u> ; and (2) match the experts with the same information given to suspected misinformation . By sending the suspected misinformation to appropriate experts , we can collect gather the assessments of experts relevant data to judge the credibility of the information , and help refute misinformation . In this paper , we focus on look at expert finding for misinformation identification . We ask experts to identify the source of the misinformation , and how it is spread. We propose a tag-based method approach to index indexing the experts of microblog users with social tags . Our approach will allow us to identify which posts are most relevant and which are not</u>. Experiments on a real world dataset demonstrate show the effectiveness of our method <u>approach</u> for expert finding with respect to misinformation identification in microblogs .

LLMs used in generative mode:

- Generate the text simplification as text (prompt) completion
- But may easily generate additional content!

as text (prompt) completion al content!

Quantify and Remove Hallucination

Run

UAms-1 GPT2 UAms-1 GPT2 Check UAms-1_Wiki_BART_Snt UAms-1 Cochrane BART Snt

UAms-2_GPT2_Check_Snt UAms-2 GPT2 Check Abs UAms-2 Wiki BART Par UAms-2 Wiki BART Doc UAms-2 Cochrane BART Par UAms-2 Cochrane BART Doc

- Hallucination main problem in LLMs: Generative models give more than asked, even for up to 29%!
 - Our "Check" removes hallucination by comparing with input alignment.
 - Standard evaluation measures are "blind" for hallucination: key to quantify and remove.

Input Sentences/Abstracts

Spurious Content

	Number	r Fraction
4,7	97 1,390) 0.29
4,7	97 3	3 0.00
4,7	97 14	4 0.00
4,7	97 25	5 0.01
7	82 111	0.14
7	82	0.00
7	82 46	5 0.06
7	82 74	
7	82 28	3 0.04
7	82 2	2 0.00

#4 Need to quantify and remove hallucination

Addressing one of the main challenges in generative AI!

Complex Term Spotting

#5 What term is (not) hard to understand?

Lay Users exhibit Great Variation

Sentence	G06.2_2810968146_2
Source	The model is a ResNet-18 variant, v
	and outputs optimal labels for steer
Reference	['ResNet-18 variant', 'braking', 'brak
	18', 'simulated F1 car', 'steering', 'st
Difficulty	['d', 'e', 'e', 'e', 'e', 'e', 'e', 'e',
Source "d"	The model is a <i>ResNet-18</i> variant, w
	and outputs optimal labels for steer
Source "m"	The model is a ResNet-18 variant, v
	and <i>outputs</i> optimal labels for steer
Source "e"	The model is a ResNet-18 variant, v
	and outputs <i>optimal labels</i> for <mark>steer</mark>
Prediction	['resnet-18', 'throttle', 'braking', 'f1'

- Lay User see lots of difficult terms (and each different ones)!
 - Simple baseline base on corpus IDF makes reasonable choices

- which is fed in images from the front of a simulated F1 car, ering, throttle, braking.
- king', 'f1 car', 'front', 'image', 'model', 'optimal label', 'resnetsteering', 'throttle', 'throttle', 'to be fed', 'to output']
- 'e', 'e', 'e', 'e', 'e', 'm']
- which is fed in images from the front of a <mark>simulated F1 car</mark>, ering, throttle, braking.
- which is fed in images from the front of a simulated F1 car, ring, throttle, braking.
- which is *fed* in *images* from the front of a simulated F1 car, ring, throttle, braking.
- ', 'fed']

Lay Users also "hallucinate"?

Terms/Sentence	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	29
Frequency (train)	53	99	90	100	44	55	23	22	16	20	3	5	4	4	1	7	2	2	1
Frequency (test)	18	31	61	65	45	32	26	16	10	3	2	4							

Source	Number of Terms	Occurs in Sentence	Not in Sentence		
Train	2,579	2,098	481		
Train (case folding)	2,579	2,334	245		
Test	1,440	1,312	128		
Test (case folding)	1,440	1,347	93		

- Up to 29 different terms/concepts, per sentence!
 - And many "spotted terms" don't literally occur in the sentence!

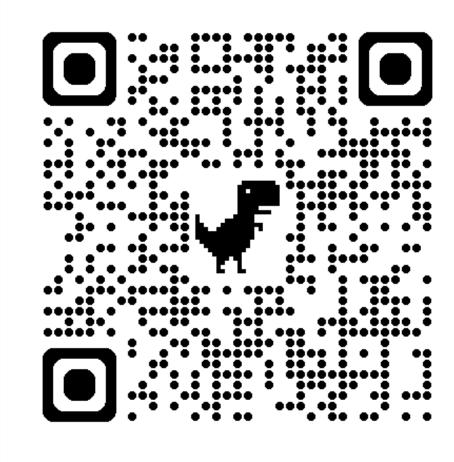
Evaluation Requires Careful Analysis...

Run		Ρ	recisio	n				Recall		F1 Score						
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
Train	0.16	0.14	0.13	0.13	0.12	0.04	0.07	0.10	0.13	0.15	0.06	0.09	0.11	0.11	0.12	
Test	0.18	0.16	0.14	0.13	0.12	0.05	0.08	0.10	0.12	0.14	0.07	0.10	0.11	0.12	0.12	
Run		Rouge									BERTScore					
		1 2					T		Lsum				R		F1	
		_					L		Louin		Р		I			
Train		0.3729		0.09	0.0946		0.3723		0.3733		0.92		0.93		0.92	
Test		0.3825 0.0957			0.	0.3810 0.3825				0.93		0.93				

- We return max. 5 single terms per sentence:

• Exact match P/R/F not high (12%), Top 1 Rouge-1 38%, but BERTScore 92%!

#5 Complex term spotting is complex...


Tricky to evaluate due to user and per sentence variation

What Happens When Laypersons Search Scientific Articles?

#1 Scientific text representations improve #2 Complexity-aware retrieval works (FKGL ~ 12) **#3 Scientific text simplification reduces complexity** #4 Need to quantify and remove hallucination **#5 Complex term spotting is complex...**

More details in the paper https://ceur-ws.org/Vol-3740/paper-310.pdf